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Abstract Topological insulators in three dimensions are nonmagnetic insulators that possess

metallic surface states as a consequence of the nontrivial topology of electronic wavefunctions in

the bulk of the material. They are the first known examples of topological order in bulk solids.

We review the basic phenomena and experimental history, starting with the observation of topo-

logical insulator behavior in BixSb1−x by spin- and angle-resolved photoemission spectroscopy

and continuing through measurements on other materials and by other probes. A self-contained

introduction to the single-particle theory is then given, followed by the many-particle definition

of a topological insulator as a material with quantized magnetoelectric polarizability. The last
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section reviews recent work on strongly correlated topological insulators and new effects that

arise from the proximity effect between a topological insulator and a superconductor. While

this article is not intended to be a comprehensive review of what is already a rather large field,

we hope that it will serve as a useful introduction, summary of recent progress, and guideline

to future directions.
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1 INTRODUCTION

Condensed matter physics starts at microscopic scales with a clear notion of

spacetime distance defined by the Minkowski metric of special relativity. It has

been understood since the discovery of the integer quantum Hall effect (IQHE)

that some phases of matter, known as topological phases, reflect the “emergence”

of a different type of spacetime. The notion of a metric disappears entirely, and

macroscopic physics is controlled by properties that are insensitive to spacetime

distance and described by the branch of mathematics known as topology. The

emergence of a topological description reflects a type of order in condensed matter
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physics that is quite different from conventional orders described in terms of

symmetry breaking. This review discusses recent experimental and theoretical

progress on three-dimensional topological insulators, the first topological phase

of bulk solids.

One distinguishing feature of topological phases is that they are typically insu-

lating or “gapped” in bulk but possess gapless edge or surface states as a result

of the topology. A related property is that the topological order can lead to

measurable physical properties with extremely precise quantization as a result of

the insensitivity of topology to local perturbations such as defects and thermal

fluctuations; the first example was the Hall (i.e., transverse) conductance in the

IQHE, which can be quantized to an integer multiple of e2/h with an accuracy of

one part per billion. However, topological order until recently was only observed

in two-dimensional electron gases under extreme conditions of low temperature

and high magnetic field.

The current excitement in this field results from the experimental discovery

that there are topological phases in fairly ordinary materials that occur in three

dimensions and zero magnetic field (1, 2, 3). The existence of three-dimensional

(3D)“ topological insulators” (4) was predicted by deriving topological invari-

ants for a general time-reversal-invariant band insulator that built on previous

work (5) on a new topological invariant of time-reversal-invariant band insulators

in 2D. Topological invariants are mathematical quantities, in this case essentially

integrals over a band structure, that are stable to continuous changes of param-

eters. Simpler forms of these invariants in inversion-symmetric materials were

found independently (6) and used to predict the first topological insulator to be

discovered, BixSb1−x (7). The 2D topological invariant underlies the “quantum
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spin Hall effect” observed in quantum wells derived from HgTe (8,9). The general

term “topological insulators” was coined to indicate that both the 2D and 3D

phases are topological in the same sense as the IQHE, with topologically pro-

tected edge or surface states that result from spin-orbit coupling rather than a

magnetic field.

The method used to discover all 3D topological insulators known so far is angle-

resolved photoemission spectroscopy (ARPES), which probes directly the unique

metallic surface state and consequently the topological invariants. The accessi-

bility of 3D topological insulators to a variety of experimental probes means that

many other types of data are now available. Topological insulators in several ma-

terials families have been discovered to date, and theoretical work has connected

topological insulators to many other areas of condensed matter physics. As both

technical (2) and non-technical (10,3) reviews are available that introduce three-

dimensional topological insulators following the historical development from the

2D case, and there is a published review specifically on the 2D case (9, 11), we

seek here to give a reasonably self-contained treatment of the 3D case, which is

the focus of most current interest for both practical and fundamental reasons.

Given length limitations and the existing review of the literature as of early

2010 (2), we will seek here to give an overview of basic facts and the essential theo-

retical background, then concentrate on recent developments. We first review the

basic facts and experimental discoveries in Section II. This section includes a dis-

cussion of which materials are currently believed to be topological insulators and

how these materials are characterized by various techniques. Our discussion of

the theory of topological insulators and how they connect to several long-standing

projects of theoretical physics, makes up Section III. Discussing even a few as-



Three-Dimensional Topological Insulators 5

pects in depth means that there are omissions in other areas; in particular, we will

have little to say in Section III about other topological single-particle problems

such as the quasiparticle Hamiltonians of topological superconductors (12,13).

Recent developments show that some important features of the 3D topological

insulator can be understood in terms of the orbital contribution to magnetoelec-

tric polarizability (Section IV), and more directly derived directly in 3D, or even

by working down from 4D, than by working up from 2D; in this respect our dis-

cussion reflects later improvements in theoretical understanding. Some rapidly

developing areas are reviewed in Section V, such as proposed proximity effects

between superconductors and topological insulators.

2 BASIC PHENOMENA AND EXPERIMENTS

This section summarizes the current body of experimental knowledge on 3D topo-

logical insulators. Readers seeking to understand the theoretical background of

the experimental observations may wish to consult Section III in parallel. The

first 3D topological insulator to be experimentally discovered was the semicon-

ducting alloy Bi1−xSbx, whose unusual surface bands were mapped in an angle-

resolved photoemission (ARPES) experiment. ARPES uses a photon to eject an

electron from a crystal, then determines the surface or bulk electronic structure

from an analysis of the momentum of the emitted electron. The 3D topological

state in Bi1−xSbx is a new state in the sense that it cannot be reduced to a

quantum spin Hall state (4, 6, 14). Its surface is a new form of 2D metal where

electron’s spin and linear momentum are locked one to one and the two dimen-

sional Fermi surface carries a nontrivial Berry’s phase of π (6). Its uniqueness

can be understood in the following way : a layered three dimensional version
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of the quantum spin Hall insulator Hg(Cd)Te would be a ”weak 3D topological

insulator (WTI)” with invariant structure of (νo=0,111). A WTI would exhibit

surface states that contain even number of Dirac cones thus a net Berry’s phase

of 0 or 2π. The surface states of a WTI are not robust against disorder.

Unlike in a transport experiment, ARPES carried out in a spin resolution

mode can, in addition, measures the distribution of spin orientations on the

Fermi surface which can be used to estimate the Berry’s phase on the surface.

Spin sensitivity is critically important for probing the existence spin-momentum

locking on the surface expected as a consequence of bulk topological order. The

3D topological insulator Bi1−xSbx on the other hand have odd number of surface

states whose spin-texture supports a non-trivial Berry’s phase providing protec-

tion against non-magnetic disorder. Such a topological insulator is described by

(νo=1, ~M).

Bismuth antimony alloys have long been studied for their thermoelectric prop-

erties (16). Bismuth is a semimetal with strong spin-orbit interactions. Its band

structure features an indirect negative gap between the valence band maximum

at the T point of the bulk Brillouin zone (BZ) and the conduction band min-

ima at three equivalent L points (17). The valence and conduction bands at

L are derived from antisymmetric (La) and symmetric (Ls) p-type orbitals, re-

spectively, and the effective low-energy Hamiltonian at this point is described by

the (3+1)-dimensional relativistic Dirac equation (18). The resulting dispersion

relation, E(~k) = ±
√

(~v · ~k)2 +∆2 ≈ ~v · ~k, is highly linear owing to the com-

bination of an unusually large band velocity ~v and a small gap ∆ (such that

|∆/|~v|| ≈ 5× 10−3Å−1) and has been used to explain various peculiar properties

of bismuth. Substituting bismuth with antimony changes the critical energies of
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the band structure. At an Sb concentration of x ≈ 4%, the gap ∆ between La and

Ls closes and a massless three-dimensional (3D) Dirac point is realized. As x is

further increased this gap re-opens with inverted symmetry ordering, which leads

to a change in sign of ∆ at each of the three equivalent L points in the BZ. For

concentrations greater than x > 7% there is no overlap between the valence band

at T and the conduction band at L, and the material becomes an inverted-band

insulator. Once the band at T drops below the valence band at L, at x ≈ 7%, the

system evolves into a direct-gap insulator with a massive Dirac-like bulk bands.

Although the presence of bulk and surface states in Bi-based materials were

known, experiments by Hsieh et.al. (1) establish the existence of a direct energy

gap in the bulk Dirac-like band-structure of Bi0.9Sb0.1. The linearly dispersive

bulk bands are uniquely consistent with strong spin-orbit coupling nature of the

inverted insulator. The same experiments observed several non-degenerate sur-

face states that span the bulk gap. In general, the states at the surface of spin-

orbit coupled compounds are allowed to be spin split owing to the loss of space

inversion symmetry [E(k, ↑) = E(−k, ↑)]. However, as required by Kramers’ the-

orem, this splitting must go to zero at the four time reversal invariant momenta

(TRIM) in the 2D surface BZ as required by Kramers theorem. Along a path

connecting two TRIM in the same BZ, the Fermi energy inside the bulk gap will

intersect these singly degenerate surface states either an even or odd number of

times. When there are an even number of surface state crossings, the surface

states are topologically trivial because weak disorder (as may arise through al-

loying) or correlations can remove pairs of such crossings by pushing the surface

bands entirely above or below EF . When there are an odd number of crossings,

however, at least one surface state must remain gapless, which makes it non-
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trivial. Such “topological metal” surface states cannot be realized in a purely 2D

electron gas system such as the one realized at the interface of GaAs/GaAlAs or

on the surface of Si.

On the (111) surface of Bi0.9Sb0.1, the four TRIM are located at Γ̄ and three

M̄ points that are rotated by 60◦ relative to one another. Owing to the three-fold

crystal symmetry (A7 bulk structure) and the mirror symmetry of the surface

Fermi surface across kx = 0, these three M̄ points are equivalent. In pure bismuth

(Bi), two surface bands emerge from the bulk band continuum near Γ̄ to form a

central electron pocket and an adjacent hole lobe. These two bands result from

the spin-splitting of a surface state and are thus singly degenerate. In Bi-Sb

alloy, in addition, a narrow electron pocket which is doubly degenerate around

M̄ is also observed (Fig.1). This is indicated by its splitting below EF between

−kx ≈ 0.55Å−1 and M̄ , as well as the fact that this splitting goes to zero at

M̄ in accordance with Kramers theorem. In Bi0.9Sb0.1, the states near M̄ fall

completely inside the bulk energy gap preserving their purely surface character

at M̄ unlike in Bi. The surface Kramers point is located approximately 15 ± 5

meV below EF at ~k = M̄ . The observation of five surface state crossings (an odd

rather than an even number) between Γ̄ and M̄ , confirmed by the observation

of the Kramers degenerate point confirms the topologically non-trivial nature of

the material. While these results are consistent with a Z2 topological insulator

scenario for Bi-Sb, more decisive evidence comes from the study of spin-texture

of the surface Fermi surface.

The bulk topological Z2 order is expected to give rise to unusual spin physics

at the edges or surfaces of topological insulators. However, unlike quantum Hall

systems, the topological insulator surfaces do not necessarily exhibit a quantized
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charge or spin response. In fact, the spin polarization is not a conserved quantity

in a spin-orbit material. Thus, their topological quantum numbers, the analogs

of the Chern number, cannot be measured via the classic magneto-transport

methods. ARPES with spin sensitivity can perform analogous measurements for

topological insulators by mapping out all 4 topological quantum numbers that

uniquely identify the topological class. Hsieh et.al. (19) measured the topological

numbers for Bi1−xSbx and provided an identification of its spin texture, which

heretofore was unmeasured despite its surface states (SSs) having been observed.

The measured spin texture (Fig.2) reveals the existence of a nonzero geometrical

quantum phase, a Berry’s phase of π and the handedness or chiral properties.

Spin-ARPES technique enables to investigate aspects of the metallic regime of

the Bi1−xSbx series, such as spin properties in pure Sb, which are necessary to de-

termine the microscopic origin of topological order. Spin-ARPES measurements

on Sb showed that its surface carries a geometrical (Berry’s) phase and chirality

property unlike the conventional spin-orbit metals such as gold, which has zero

net Berry’s phase and no net chirality.

The odd number of Fermi crossings protects the topological surface from be-

coming insulating, regardless of the position of the chemical potential or the influ-

ence of non-magnetic perturbations. Spin-ARPES experiments have established

that these surface states have a chiral spin structure and carries a non-trivial

Berry’s phase, which makes them distinct from ordinary surface states. All these

characteristics suggest that backscattering, or scattering between states of equal

and opposite momentum, which results in Anderson localization in typical low-

dimensional systems (24), will not occur for these two-dimensional carriers. Ran-

dom alloying in Bi1−xSbx, which is not present in other material families of topo-
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logical insulators found to date, makes this material system an ideal candidate

in which to examine the impact of disorder or random potential on topological

surface states. The fact that the chiral two-dimensional states are indeed pro-

tected from spin-independent scattering was established by Roushan et.al. (20)

by combining results from scanning tunneling spectroscopy (STM/STS) and spin-

ARPES on Bi0.92Sb0.08. The results show that despite strong atomic scale disor-

der and random potential, elastic-backscattering between states of opposite mo-

mentum and opposite spin is absent. These observations demonstrate that the

chiral nature of these states protects the spin of the carriers which is ultimately a

consequence of time-reversal symmetry. The same conclusion has emerged from

studies of the electronic interference patterns near defects or steps on the surface

that electrons never turn completely around when scattered in other topological

insulators (25,26)).

While the surface structure of Bi1−xSbx alloy material was found to be rather

complicated and bandgap to be rather small, this work launched a search for

topological insulators with larger bandgap and simpler surface spectrum for ob-

serving topological phenomena at high temperatures. Topological phenomena

in materials are usually very fragile and impossible to create without liquid he-

lium temperatures and high magnetic fields. New three-dimensional ”topological

insulator” materials, especially Bi2Se3, offer the potential for protected surface

states and other topological behavior at room temperature. In 2008, work led

by a Princeton group used angle-resolved photoemission spectroscopy (ARPES)

and first-principles calculations to study the surface band structure of Bi2Se3

and observe the characteristic signature of a topological insulator in the form of

a single-Dirac-cone (21,22). Concurrent theoretical work by H.Zhang et al. (27)
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used electronic structure methods to show that Bi2Se3 is just one of several new

large-bandgap topological insulators. Zhang et.al., also provided a simple tight-

binding model to capture the single-Dirac-cone observed in Bi2Te3 (28) and made

new predictions about Bi2Se3 and Sb2Te3. Subsequently, detailed and systematic

surface investigations of Bi2Se3 (23,29,30); Bi2Te3 (31,23,32,33) and Sb2Te3 (32)

confirmed the topological band-structure of all 3 of these materials.

The unusual planar metal that forms at the surface of topological insulators

inherits topological properties from the bulk bandstructure. The manifestation of

this bulk-surface connection occurs at a smooth surface where momentum along

the surface remains well-defined: in its simplest possible form, each momentum

along the surface has only a single spin state at the Fermi level, and the spin

direction rotates as the momentum moves around the Fermi surface ensuring a

non-trivial Berry’s phase. These two defining properties of topological insulators

namely spin-momentum locking of surface states and π Berry’s phase along with

the consequences such as the robustness to non-magnetic disorder could be most

clearly demonstrated with the discovery of the second generation of topological

insulators.

While the phase observed in Bi1−xSbx alloys is theoretically the same as that

observed in the Bi2Se3 class, there are three crucial differences that suggest that

this series may become the reference material for future experiments on this

phase. The Bi2Se3 surface state is found from ARPES and theory to be nearly

the idealized single Dirac cone as seen from the experimental data in Fig.4&5.

Second, Bi2Se3 is stoichiometric (i.e., a pure compound rather than an alloy like

Bi1−xSbx) and hence can be prepared in principle at higher purity. While the

topological insulator phase is predicted to be quite robust to disorder, many
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experimental probes of the phase, including ARPES of the surface band struc-

ture, are clearer in high-purity samples. Finally, and perhaps most important

for applications, Bi2Se3 has a large band gap of approximately 0.3 eV (equiv-

alent to 3600 Kelvin). In its high purity form, the large band gap of Bi2Se3

indicates that topological behavior can be seen at room temperature and greatly

increases the potential for applications (Fig.7). To understand the likely impact

of these new topological insulators, an analogy can be drawn with the early days

of high-temperature cuprate superconductivity: the original cuprate supercon-

ductor LBCO was quickly superseded by ”second-generation” materials such as

YBCO and BSCCO for most applied and scientific purposes (34).

All the key properties of topological states have been demonstrated for Bi2Se3

which has the most simple Dirac cone surface spectrum and the largest band-

gap (0.3 eV). In Bi2Te3 the surface states exhibit large deviations from a simple

Dirac cone due to a combination of smaller band-gap (0.15 eV) and a strong

trigonal potential (31) which can be utilized to explore some aspects of its surface

properties (36, 37). Hexagonal deformation of the surface states is confirmed by

STM measurements (26). Speaking of applications within this class of materials,

Bi2Te3, is already well known to materials scientists working on thermoelectricity:

it is a commonly used thermoelectric material in the crucial engineering regime

near room temperature.

Two defining properties of topological insulators namely spin-momentum lock-

ing of surface states and π Berry’s phase could be clearly demonstrated in Bi2X3

series. The protected nature of the surface states are also most straightforwardly

demonstrated. Topological surface states are protected by time reversal symme-

try which implies that the surface state Dirac node would be robust in the pres-
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ence of non-magnetic disorder but open a gap in the presence of time-reversal

breaking perturbation of the system such as the effect of magnetic impurities and

the associated disorder. Magnetic impurity such as Fe on the surface of Bi2Se3

opens a gap at the Dirac point (Fig.5) (22,23,38). The magnitude of the gap is

likely set by the interaction of Fe ions with the Se surface and the time-reversal

breaking disorder potential introduced on the surface. Non-magnetic disorder

created via molecular absorbent NO2 or alkali atom adsorption (K or Na) on the

surface leaves the Dirac node intact (Fig.5) in both Bi2Se3 and Bi2Te3 (33, 23).

These results are consistent with the fact that the topological surface states are

protected to be metallic by time-reversal symmetry.

Most of the interesting theoretical proposals that utilize topological insulator

surfaces require the chemical potential to lie at the degenerate Dirac node similar

to the case in graphene. In graphene, the chemistry of carbon atoms naturally

locates the Fermi level at the Dirac point — the point at which the two cones in-

tersect — where the density of states vanishes. This makes its density of carriers

highly tunable by an applied electrical field and enables applications of graphene

to both basic science and microelectronics. The surface Fermi level of a topolog-

ical insulator does not have any particular reason to sit at the Dirac point, but

by a combination of surface and bulk chemical modification, tuning to the Dirac

point in Bi2Se3 was demonstrated by Hsieh et.al. (23). This was achieved by

passivating the Se vacancies with Ca in the bulk to place the Fermi level within

the bulk bandgap and then hole doping the surface with NO2 to keep the chem-

ical potential at the Dirac point. While this is an important advancement for

furthering the spectroscopic measurements, it needs to be seen how such a degree

of surface engineering can be achieved in a transport measurement geometry.
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Recent observations of superconductivity in CuxBi2Se3 (Tc = 3.8K) by Hor

et.al., (39) have raised interest in understanding the role of spontaneously bro-

ken symmetry within a topological band-structure. Measurements of electronic

band structure in CuxBi2Se3 (x=0 to 12%) by Wray et.al., (40) suggest that su-

perconductivity occurs with electrons in a bulk relativistic kinematic regime and

we identify that an unconventional doping mechanism causes the nontrivial topo-

logical surface character of the undoped compound to be preserved at the Fermi

level of the superconducting compound, where Cooper pairing occurs. Moreover,

they report key band parameters that constrain the form of the superconducting

state. These experimental observations provide important clues for developing

a theory of superconductivity in doped Bi-based topological insulators. Two

possible theoretical scenarios are shown in Fig.6.

While the 3D topological insulators, whose variants can host magnetism and su-

perconductivity, has generated widespread research activity in condensed-matter

and materials-physics communities, there has also been intense efforts to discover

new materials class. This is largely because some of the most interesting topolog-

ical phenomena, however, require topological insulators to be placed in multiply

connected, highly constrained geometries with magnets and superconductors all

of which thus require a large number of functional variants with materials design

flexibility as well as electronic, magnetic and superconducting tunability. Given

the optimum materials, topological properties open up new vistas in spintron-

ics, quantum computing and fundamental physics. We have extended the search

for topological insulators from the binary Bi-based series to the ternary thermo-

electric Heusler compounds. It has been recently found that although a large

majority of the well-known Heuslers such as TiNiSn and LuNiBi are rather topo-
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logically trivial, the distorted LnPtSb-type (such as LnPtBi or LnPdBi, Ln=fn

lanthanides) compounds belonging to the half-Heusler subclass harbour Z2=-1

topological insulator parent states, where Z2 is the band parity product index.

Half-Heuslers provide a new platform for deriving a host of topologically exotic

compounds and their nanoscale or thin-film device versions through the inherent

flexibility of their lattice parameter, spinorbit strength and magnetic moment

tunability paving the way for the realization of multifunctional topological de-

vices (35,41). Heuslers are not insulating in their native state but growing them

on substrates making thinfilms or quantum-well structures provide a way to open

a band-gap turning them into real insulators.

While in the above we have focused on crystals for basic characterization,

films and nanostructures of topological insulators will eventually be important for

applications and have already enabled important tests of theoretical predictions.

Two examples are the observation of a thickness-dependent gap in MBE-grown

films (42) using in-situ ARPES and the transport measurement of Aharonov-

Bohm oscillations in topological insulator nanoribbons (43) (for the latter, see also

the theoretical works (44,45)). In addition to applications to thermoelectrics and

spintronics (46), such thin films might enable observation of an unusual exciton

condensate (47). The main remaining limitation of current materials, especially

for experimental techniques that (unlike ARPES) do not distinguish directly

between bulk and surface states, is that they have some residual conduction

in the bulk from impurity states even if the band-structure features an energy

gap.
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3 INDEPENDENT-ELECTRON THEORY OF 3D TOPOLOG-

ICAL INSULATORS

One view of topological insulators is that they represent a continuation, and

possibly the culmination, of a long-term program, initiated by David Thouless

and collaborators (48), to understand the consequences of the Berry phase for

electrons in solids. Their first result, even before the work by Berry that explained

the general concept of the Berry phase (49), related the topology of electron

wavefunctions in the to the integer quantum Hall effect. Topological phases

in which a response function is expressed in terms of a topological invariant are

often referred to as “Thouless-type topological phases”; the IQHE and topological

insulators in 2D and 3D are examples.

The integer quantum Hall effect has the remarkable property that, even at

finite temperature in a disordered material, a transport quantity is quantized to

remarkable precision: the transverse (a.k.a. Hall) conductivity is σxy = ne2/h,

where n is integral to 1 part in 109. This quantization results because σxy is deter-

mined by a topological invariant, and understand this intrinsically 2D topological

invariant also leads to the modern theory of polarization, which is mathemati-

cally a 1D quantity (i.e., it exists in dimensions 1 and above). We review these

developments in order to understand the single-particle picture of 3D topological

insulators and the connection to orbital magnetoelectric polarizability. Our dis-

cussion starts with noninteracting electrons in a perfect crystal and then explain

the generalizations to disorder and interactions.

In the IQHE and topological insulators, the topological invariant can be ob-

tained from integration over the Brillouin zone of a quantity derived from the

Berry phase of electron wavefunctions. The idea of the Berry phase (49) is that,
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as an eigenstate evolves under a Hamiltonian whose parameters change adiabat-

ically, there is a physically significant phase that accumulates. The Berry phase

can be rather important even when it is not part of a topological invariant. In

crystalline solids, the electrical polarization, the anomalous Hall effect, and one

part of the magnetoelectric polarizability all derive from “non-topological” Berry

phases of the Bloch electron states.

The space of parameters for these Berry phases is just the crystal momentum

k: Bloch’s theorem for electrons in a periodic potential states that, given a po-

tential invariant under a set of lattice vectors R, V (r+R) = V (r), the electronic

eigenstates can be labeled by a “crystal momentum” k and written in the form

ψk(r) = eik·ruk(r), (1)

where the function u has the periodicity of the lattice. Note that the crystal

momentum k is only defined up to addition of reciprocal lattice vectors, i.e.,

vectors whose dot product with any of the original lattice vectors is a multiple of

2π.

While the energetics of Bloch wavefunctions (“band structure”) underlies many

properties of solids, and matrix elements of the wavefunctions are important for

optical and other properties, it has been appreciated only recently that many

phenomena are governed by Berry-phase physics arising from the smooth depen-

dence of the wavefunction uk on k. Even in a one-dimensional system, there is

a nontrivial “closed loop” in the parameter k that can be defined because of the

periodicity of the “Brillouin zone”’ k ∈ [−π/a, π/a):

γ =

∮ π/a

−π/a
〈uk|i∂k|uk〉dk. (2)

Like other Berry phases, the phase γ is obtained as an integral of a “connection”
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A = 〈uk|i∂k|uk〉. In this 1D example, A is just a scalar; in higher dimensions it

is a vector potential that lives in momentum space. How are we to interpret this

Berry phase physically? An intuitive clue is provided if we make the replacement

i∂k by x, as would be appropriate if we consider the action on a plane wave.

This suggests, correctly, that the Berry phase may have something to do with

the spatial location of the electrons: in fact the electronic polarization is just

eγ/2π (50).

Another clue to what the phase γ might mean physically is provided by asking

if it is gauge-invariant. In the usual situation, gauge-invariance of the Berry phase

results from assuming that the wavefunction could be continuously defined on the

interior of the closed path. But here we have a closed path on a noncontractible

manifold; the path in the integral winds around the Brillouin zone, which has

the topology of the circle. (Here we are implicitly introducing another kind of

topological invariant. One kind comes from integrating differential forms derived

from the Berry phase, which is a “cohomology” invariant; another kind are “ho-

motopy” invariants, the generalizations of the notion of winding number. The

homotopy groups πn(M), which describe equivalence classes of mappings from

the sphere Sn to the manifold M , will occasionally be mentioned in technical

remarks below. The book of Nakahara (51) is a physics-oriented reference that

covers both cohomology and homotopy.)

What happens to the Berry phase if we introduce a phase change φ(k) in the

wavefunctions, |uk〉 → e−iφ(k)|uk〉, with φ(π/a) = φ(−π/a) + 2πn, n ∈ Z? Under

this transformation, the integral shifts as

γ → γ +

∮ π/a

−π/a
(∂kφ) dk = γ + 2πn. (3)

So redefinition of the wavefunctions shifts the Berry phase, and this corresponds
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to changing the polarization by a multiple of the “polarization quantum”, which

in one dimension is just the electron charge. (In higher dimensions, the po-

larization quantum of a crystal is one electron charge per transverse unit cell.)

Physically the ambiguity of polarization corresponds to how adding an integer

number of charges to one allowed termination gives another allowed termina-

tion (52). The Berry phase is not gauge-invariant, but any fractional part it had

in units of a is gauge-invariant. We discussed this one-dimensional example in

some detail because topological insulators will be very similar. The above calcula-

tion suggests that, to obtain a fully gauge-invariant quantity, we need to consider

a two-dimensional crystal rather than a one-dimensional one. Then integrating

the Berry curvature, rather than the Berry connection, has to give a well-defined

gauge-invariant quantity.

Indeed, the one-dimensional polarization example is related to the two-dimensional

integer quantum Hall effect, which historically came first. When a lattice is put in

a commensurate magnetic field (one with rational flux per unit cell, in units of the

flux quantum so that Bloch’s theorem applies), each occupied band j contributes

an integer (48)

nj =
i

2π

∫

dkx dky
(

〈∂kxuj|∂kyuj〉 − 〈∂kyuj |∂kxuj〉
)

(4)

to the total Hall conductance:

σxy =
e2

h

∑

j

nj. (5)

This topological quantity (the “TKNN integer” or “Chern number”, expressed

as an integral over the Berry flux, which is the curl of the Berry connection

Aj = i〈uj |∇kuj〉) is connected to the IQHE and also changes in polarization.

The relationship between polarization in 1D, which has an integer ambiguity,
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and the IQHE in 2D, which has an integer quantization, is the simplest example

of the relationship between Chern-Simons forms in odd dimension and Chern

forms in even dimension. Looking ahead, the topological insulator in 3D can be

similarly related to the topological invariants in 4 dimensions (53) that underlie

the “four-dimensional quantum Hall effect” (54).

One might worry whether the TKNN integer defined in equation (4) is specific

to noninteracting electrons in perfect crystals. An elegant way to generalize

the definition physically, while keeping the same mathematical structure, was

developed by Niu, Thouless, and Wu (55). One can imagine a disordered system

on a torus and rewrite the topological invariant above in terms of how much

charge is “pumped” around one circle by adiabatic insertion of flux through

the other circle. The same trick can be used to generalize the 3D topological

insulator invariants described below to disordered systems. While for the IQHE

the “flux trick” is sufficient to handle interacting systems as well as disordered

ones, a different approach is necesary for topological insulators. One final note

before moving on to time-reversal-invariant Fermi systems is that, while we have

concentrated above on giving explicit expressions for the invariants in terms of

wavefunctions, which is useful to get their physical meaning, it is often more

direct for topological classification to consider homotopy groups of the Bloch

Hamiltonians (56,53).

3.1 Time-reversal invariance in Fermi systems

Kane and Mele showed in 2005 that imposing time-reversal symmetry in 2D

electronic systems leads to new topological invariants. (57) While nonzero Chern

numbers cannot be realized with time-reversal invariance, the zero-Chern-number
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class of systems gets subdivided into two pieces: “ordinary” insulators that do not

in general have an edge state, and a “quantum spin Hall effect” or “topological

insulator” where a bulk topological invariant forces an edge state. The topological

invariant is not an integer but rather a two-valued or Z2 invariant.

One idea that triggered this development was to consider two copies of the

quantum Hall effect, one for spin-up electrons and one for spin-down, with op-

posite effective magnetic fields for the two spins. This combination (58) is time-

reversal invariant because acting with the time-reversal operator T changes both

the magnetic field direction and the spin. Note that in a model such as this, Sz

is a conserved quantum number even though SU(2) (spin-rotation invariance) is

clearly broken, as up and down spins behave differently. Heuristically, think of

the spin-orbit coupling as arising from intra-atomic terms like L ·S, and consider

specifically LzSz. For an electron of fixed spin, this coupling to the orbital mo-

tion described by Lz is just like the coupling in a constant magnetic field. In the

simplest case of a Chern number +1 state of up electrons and a Chern number

−1 state of down electrons, the edge will have counterpropagating modes: e.g.,

up-spin moves clockwise along the edge and down-spin moves counterclockwise.

This turns out not to be a bad caricature of the quantum spin Hall phase in a

more realistic system: one can tell by symmetry arguments that it will have no

quantum Hall effect (i.e., αc = 0 in Ji = αcǫijkEjBk), but it will generically have

a “spin Hall effect”

J i
j = αsǫijkEk, (6)

where αc and αs are numbers and J i
j is a spin current (a current of angular

momentum i in spatial direction j).

As an example of this “two copies of the IQHE” generated by spin-orbit cou-
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pling, consider the model of graphene introduced by Kane and Mele.(59) This is a

tight-binding model for independent electrons on the honeycomb lattice (Fig. 8).

The spin-independent part of the Hamiltonian consists of a nearest-neighbor hop-

ping, which alone would give a semimetallic spectrum with Dirac nodes at certain

points in the 2D Brillouin zone, plus a staggered sublattice potential whose effect

is to introduce a gap:

H0 = t
∑

〈ij〉σ

c†iσcjσ + λv
∑

iσ

ξic
†
iσciσ . (7)

Here 〈ij〉 denotes nearest-neighbor pairs of sites, σ is a spin index, ξi alternates

sign between sublattices of the honeycomb, and t and λv are parameters.

The insulator created by increasing λv is an unremarkable band insulator. How-

ever, the symmetries of graphene also permit an “intrinsic” spin-orbit coupling

of the form

HSO = iλSO
∑

〈〈ij〉〉σ1σ2

νijc
†
iσ1
szσ1σ2

cjσ2
. (8)

Here νij = (2/
√
3)d̂1× d̂2 = ±1, where i and j are next-nearest-neighbors and d̂1

and d̂2 are unit vectors along the two bonds that connect i to j. Including this

type of spin-orbit coupling alone would not be a realistic model. For example,

the Hamiltonian H0+HSO conserves sz, the distinguished component of electron

spin, and reduces for fixed spin (up or down) to Haldane’s model.(60) Generic

spin-orbit coupling in solids should not conserve any component of electron spin.

This model with Sz conservation is mathematically treatable using the Chern

number above, as it just reduces to two copies of the IQHE. It turns out that

the stability of the phase to more general spin-orbit coupling is dependent on

a subtle property of spin-half particles. The surprise is that the quantum spin

Hall phase survives, with interesting modifications, once we allow more realistic
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spin-orbit coupling, as long as time-reversal symmetry remains unbroken. The

time-reversal operator T acts differently in Fermi and Bose systems, or more

precisely in half-integer versus integer spin systems. Kramers showed that the

square of the time-reversal operator is connected to a 2π rotation, which implies

that

T 2 = (−1)2S , (9)

where S is the total spin quantum number of a state: half-integer-spin systems

pick up a minus sign under two time-reversal operations.

An immediate consequence of this is the existence of “Kramers pairs”: every

eigenstate of a time-reversal-invariant spin-half system is at least two-fold de-

generate. Combining Kramers pairs with what is known about the edge state

gives some intuition about why a odd-even or Z2 invariant might be physical

here. If there is only a single Kramers pair of edge states and we consider low-

energy elastic scattering, then a right-moving excitation can only backscatter into

its time-reversal conjugate, which is forbidden by the Kramers result (it would

split the pair) if the perturbation inducing scattering is time-reversal invariant.

However, if we have two Kramers pairs of edge modes, then a right-mover can

back-scatter to the left-mover that is not its time-reversal conjugate (62,63). This

process will, in general, eliminate these two Kramers pairs from the low-energy

theory.

The general belief based on this argument is that a system with an even number

of Kramers pairs will, under time-reversal-invariant backscattering, localize in

pairs down to zero Kramers pairs, while a system with an odd number of Kramers

pairs will wind up with a single stable Kramers pair. But rather than just trying

to understand whether the edge is stable, to predict from bulk properties whether
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the edge will have an even or odd number of Kramers pairs. Kane and Mele

showed that starting from the 2D T -invariant crystal, there are two topological

classes; instead of an integer-valued topological invariant, there is a “Z2 invariant

with two values, “even” and “odd”. Several formulations of this invariant are now

available (57, 64, 65, 66, 4). The even and odd classes correspond in the example

above (of separated up- and down-spins) to paired IQHE states with even or odd

Chern number for one spin.

We expect that, as for the IQHE, it should be possible to reinterpret the Z2

invariant as an invariant that describes the response of a finite toroidal system

to some perturbation. In the IQHE, the response is the amount of charge that is

pumped around one circle of the torus as a 2π flux (i.e., a flux hc/e) is pumped

adiabatically through the other circle. The pumping definition for the 2D topo-

logical insulator involves a π-flux; one can consider pumping of “Z2” (or Kramers

degeneracy) from one boundary to another of a large cylinder (66) (local insertion

of a π flux similarly induces a degeneracy (67)). Alternately, a precise restate-

ment of the Z2 invariant closes the process after π flux insertion so that what

is pumped is ordinary charge. (61, 68) These approaches directly generalize the

Z2 invariant to disordered single-electron systems; this and other 3D effects have

recently been studied (69). For the 3D topological insulator, we will later intro-

duce an alternative to pumping, the magnetoelectric polarizability, that defines

the phase in the presence of interactions.

3.2 3D topological insulators

We review quickly the band structure invariants that were used in the first def-

initions of the 3D topological insulator (4, 6, 14). Since the key emergent prop-
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erties are somewhat difficult to perceive directly from the bulk band structure

invariants, we then use a different picture to explain the surface state (6) and

magnetoelectric polarizability (70,71,72).

We start by asking to what extent the two-dimensional integer quantum Hall

effect can be generalized to three dimensions. A generalization of the previously

mentioned homotopy argument of Avron, Seiler, and Simon (56) can be used to

show that there are three Chern numbers per band in three dimensions, associated

with the xy, yz, and xz planes of the Brillouin zone. A more physical way to

view this is that a three-dimensional integer quantum Hall system consists of a

single Chern number and a reciprocal lattice vector that describes the “stacking”

of integer quantum Hall layers (73). The edge of this three-dimensional IQHE is

quite interesting: it can form a two-dimensional chiral metal, as the chiral modes

from each IQHE (74) combine and point in the same direction. (75,76)

Now consider the Brillouin zone of a three-dimensional time-reversal-invariant

material. Our approach, following the derivation of the 3D topological invariants

in (4), builds on the two-dimensional case. In the case of inversion symmetry, a

useful trick (7, 2) allows the integrals in the following approach to be expressed

simply in terms of the parity eigenvalues at the time-reversal-invariant points.

This led to the understanding of the detailed surface state structure (6) that was

important the experimental observation of the phase (1).

Concentrating on a single band pair, there is a Z2 topological invariant de-

fined in the two-dimensional problem with time-reversal invariance. Taking the

Brillouin zone to be a torus, there are two inequivalent xy planes that are dis-

tinguished from others by the way time-reversal acts: the kz = 0 and kz = ±π/a

planes are taken to themselves by time-reversal (note that ±π/a are equivalent
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because of the periodic boundary conditions). These special planes are essentially

copies of the two-dimensional problem, and we can label them by Z2 invariants

z0 = ±1, z±1 = ±1, where +1 denotes “even Chern parity” or ordinary 2D insu-

lator and −1 denotes “odd Chern parity” or topological 2D insulator. Other xy

planes are not constrained by time-reversal and hence do not have to have a Z2

invariant.

The most interesting 3D topological insulator phase (the “strong topological

insulator”, in the language of (6)) results when the z0 and z±1 planes are in

different 2D classes. This can occur if, moving in the z direction between these

two planes, one has a series of 2D problems that interpolate between ordinary and

topological insulators by breaking time-reversal. We will concentrate on this type

of 3D topological insulator here. Another way to make a 3D topological insulator

is to stack 2D topological insulators, but considering the edge of such a system

shows that it will not be very stable: since two “odd” edges combine to make an

“even” edge, which is unstable in the presence of T -invariant backscattering, we

call such a stacked system a “weak topological insulator” (6). This edge state

can appear at crystalline dislocations (77).

Above we found two xy planes with two-dimensional Z2 invariants. By the same

logic, we could identify four other such invariants x0, x±1, y0, y±1. However, not

all six of these invariants are independent: some geometry shows that there are

two relations, reducing the number of independent invariants to four:

x0x±1 = y0y±1 = z0z±1. (10)

(Sketch of geometry: to establish the first equality above, consider evaluating

the Fu-Kane 2D formula on the four EBZs described by the four invariants

x0, x+1, y0, y+1. These define a torus, on whose interior the Chern two-form
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F is well-defined. Arranging the four invariants so that all have the same orien-

tation, the A terms drop out, and the F integral vanishes as the torus can be

shrunk to a loop. In other words, for some gauge choice the difference x0 − x+1

is equal to y0 − y+1. ) We can take these four invariants in three dimensions

as (x0, y0, z0, x0x±1), where the first three describe layered “weak” topological

insulators, and the last describes the strong topological insulator (STI), which

is the one typically meant by ”3D topological insulator”. The “axion electrody-

namics” field theory in the next subsection is consistent with there being only

one genuinely three-dimensional Z2 invariant.

This derivation shows that the strong topological insulator cannot be realized

in any model with Sz conservation, while, as explained earlier, a useful example of

the 2D topological insulator (a.k.a. “quantum spin Hall effect”) can be obtained

from combining IQHE phases of up and down electrons. The impossibility of

making an STI with Sz conservation follows from noting that all planes normal

to z have the same Chern number, as Chern number is a topological invariant

whether or not the plane is preserved by time-reversal. In particular, the kz =

0 and kz = ±π/a phases have the same Chern number for up electrons, say,

which means that these two planes are either both 2D ordinary or 2D topological

insulators.

While the above argument is rather general, it does not give much insight into

what sort of gapless surface states we should expect at the surface of a strong

topological insulator. The spin-resolved surface Fermi surface encloses an odd

number of Dirac points (6). In the simplest case of a single Dirac point, believed

to be realized in Bi2Se3, the surface state can be pictured as “one-quarter of

graphene.” Graphene, a single layer of carbon atoms that form a honeycomb
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lattice, has two Dirac points and two spin states at each k; spin-orbit coupling

is quite weak since carbon is a relatively light element. The surface state of

a three-dimensional topological insulator can have a single Dirac point and a

single spin state at each k. As in the edge of the 2D topological insulator, time-

reversal invariance implies that the spin state at k must be the T conjugate of

the spin state at −k. This picture of the surface state can be obtained by work-

ing backward; in the following section we will effectively redefine a topological

insulator as a material whose surfaces, when gapped by a weak magnetic field,

have half-integer quantum hall effect, and since each Dirac fermion at the surface

contributes a half-integer when gapped, there must have been an odd number

prior to the magnetic perturbation.

4 TOPOLOGICAL INSULATORS AND ORBITAL MAGNE-

TOELECTRIC POLARIZABILITY

The three-dimensional topological insulator turns out to be connected to a basic

electromagnetic property of solids: the orbital contribution to the magnetoelectric

polarizability dP/dB (70,71,72). We know that in an insulating solid, Maxwell’s

equations can be modified because the dielectric constant ǫ and magnetic per-

meability µ need not take their vacuum values. Another effect is that solids can

generate the electromagnetic term

∆LEM =
θe2

2πh
E ·B =

θe2

16πh
ǫαβγδFαβFγδ . (11)

This term describes a magnetoelectric polarizability: an applied electrical field

generates a magnetic dipole, and vice versa. An essential feature of the above

“axion electrodynamics” (cf. Wilczek, 1987 (78) and references therein) is that,
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when the axion field θ(x, t) is constant, it plays no role in electrodynamics; this

follows because θ couples to a total derivative, ǫαβγδFαβFγδ = 2ǫαβγδ∂α(AβFγδ)

(here we used that F is closed, i.e., dF = 0), and so does not modify the equa-

tions of motion. However, the presence of the axion field can have profound

consequences at surfaces and interfaces, where gradients in θ(x) appear.

A bit of work shows that, at a surface where θ changes, there is a surface

quantum Hall layer of magnitude

σxy =
e2(∆θ)

2πh
. (12)

(This can be obtained by moving the derivative from one of the A fields to act on

θ, leading to a Chern-Simons term for the EM field at the surface, which gives an

integer quantum Hall effect.) The magnetoelectric polarizability described above

can be obtained from these layers: for example, an applied electric field generates

circulating surface currents, which in turn generate a magnetic dipole moment.

In a sense, σxy is what accumulates at surfaces because of the magnetoelectric

polarizability, in the same way as charge is what accumulates at surfaces because

of ordinary polarization.

We write θ as an angle because, like polarization, θ is only well defined as a bulk

property modulo 2π. The integer multiple of 2π is only specified once we specify

a particular way to make the boundary. The connection to the 3D topological

insulator? (70) At first glance, θ = 0 in any time-reversal-invariant system, since

θ → −θ under time-reversal. However, since θ is periodic, θ = π also works, as

−θ and θ are equivalent because of the periodicity, and is inequivalent to θ = 0.

In a band structure of noninteracting electrons, θ receives a contribution from
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the integral of the Chern-Simons form:

θ = − 1

4π

∫

BZ
d3k ǫijk Tr[Ai∂jAk − i

2

3
AiAjAk]. (13)

Qi, Hughes, and Zhang obtained this term by working down from the 4D quan-

tum Hall effect, as explained below. It can also be obtained (71) from semi-

classical results on polarization in inhomogeneous systems (79) or more direct

approaches (72, 80). The improvement is that these make clear that, for a gen-

eral solid (not necessarily a topological insulator), the Chern-Simons integral is

just one contribution to the electromagnetic θ. Here we sketch on understanding

the physical and mathematical meaning of the Chern-Simons form that consti-

tutes the integrand, chiefly by discussing analogies with our previous treatment of

polarization in one dimension and the IQHE in two dimensions. These analogies

and some important differences are summarized in Table I.

In this section,

Fij = ∂iAj − ∂jAi − i[Ai,Aj ] (14)

is the (generally non-Abelian) Berry curvature tensor (Aλ = i〈u|∂λ|u〉), and the

trace and commutator refer to band indices. We can understand the Chern-

Simons form K = Tr[Ai∂jAk − i23AiAjAk] that appears in the integral above

starting from the second Chern form Tr[F ∧F ]; the relationship between the two

is that

dK = Tr[F ∧ F ], (15)

just as A is related to the first Chern form: d(TrA) = TrF . These relationships

hold locally (this is known as Poincare’s lemma, that any closed form is locally an

exact form) but not globally, unless the first or second Chern form is trivial (i.e.,

generates the trivial cohomology class. For example, the existence of a nonzero
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first Chern number on the sphere prevents us from finding globally defined wave-

functions that would give an A with dA = F . We are assuming in even writing

the Chern-Simons formula for θ that the ordinary Chern numbers are zero, so

that an A can be defined in the 3D Brillouin zone. We would run into trouble

if we assumed that an A could be defined in the 4D Brillouin zone if the first or

second Chern number were nonzero. The second Chern number invariant of a 4D

band structure (53) underlies the four-dimensional quantum Hall effect (54).

Although this 4D QHE is not directly measurable, it is mathematically con-

nected to the 3D magnetoelectric polarizability in the same way as 1D polariza-

tion and the 2D IQHE are connected. But a difference is that the Berry phase

entirely determines 1D polarization, while in general the orbital magnetoelectric

polarizability of a 3D crystal, even its diagonal part, contains further terms be-

yond the Berry phase (the correct expression is in (72,80)). But these “ordinary”

terms disappear in either the “topological” limit of (70) where all occupied bands

have the same energy -1 and all unoccupied bands have the same energy +1, or in

topological insulators, where the only surviving term is (Eq. 13). Hence in many

simple models in the literature the extra terms actually vanish; an exception is a

pyrochlore lattice model (81).

We can give a many-body understanding of θ that clarifies the geometric rea-

son for its periodicity even in a many-particle system (71). Consider evaluating

dP/dB by applying the 3D formula

Pi = e

∫

BZ

d3k

(2π)3
TrAi . (16)

which generalizes to interacting systems (82) via the flux trick, to a rectangular-

prism unit cell. The minimum magnetic field normal to one of the faces that can

be applied to the cell without destroying the periodicity is one flux quantum per
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unit cell (83), or a field strength h/(eΩ), where Ω is the area of that face. The

ambiguity of polarization (16) in this direction is one charge per transverse unit

cell area, i.e., e/Ω. Then the ambiguity in dP/dB is, choosing the x direction,

∆
Px

Bx
=

e/Ω

h/(eΩ)
=
e2

h
= 2π

e2

2πh
. (17)

So the periodicity of 2π in θ is a consequence of the geometry of polarization, and

is independent of the single-electron assumption that leads to the microscopic

Chern-Simons formula. The surface interpretation of the periodicity is that it

results from the freedom to add a surface integer quantum Hall layer without

any change in the bulk properties. (Adding a fractional quantum Hall layer

involves additional subtleties related to the topological ground state degeneracy.)

5 RECENT DEVELOPMENTS: STRONG CORRELATIONS

AND MAJORANA FERMIONS

Many of the topics of greatest recent interest, both theoretically and experimen-

tally, involve connections between strongly correlated electrons and topological

insulators. There could be materials in which the topological insulator behavior

emerges as a result of electron correlations (a 2D theoretical model is introduced

in (84)). Similar behavior to that in simple topological insulators can occur

in Kondo lattice systems (85)) and in antiferromagnets (86). In Mott insula-

tors, emergent fermionic excitations (spinons) could form a topological phase

with surfaces that are electrically insulating but thermally conducting (87). In-

teractions could lead to spontaneous instabilities at the surfaces of topological

insulators (88).

It seems fitting to end our review by explaining how topological insulators
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might enable creation and observation of one of the most long-sought particles of

nature. A Majorana fermion is a fermion that is its own antiparticle, unlike an

ordinary (Dirac) fermion such as the electron, which has a distinct antiparticle

(positron or hole). The search for Majorana fermions as fundamental particles

continues, but it is now believed that several condensed matter systems may

support emergent Majorana fermion excitations, and possible observation of a

Majorana fermion was reported in 2009 by Willett et al. (89) by interferometric

transport on the ν = 5/2 fractional quantum Hall state.

Majorana fermions can be created in several ways using topological insulators.

The most direct proposal using a 3D topological insulator is to consider the prox-

imity effect from an ordinary s-wave superconductor. The result (90) (Figure 9)

is an interface layer of 2D “topological superconductor” that is distinct but sim-

ilar to the 2D p+ ip superconductor that has been understood for some time to

support Majorana fermions. A magnetic vortex core in such a system will carry

a zero-energy Majorana fermion state localized near the vortex in the interface

layer, as well as possibly ordinary electronic modes.

There have been many recent works discussing either how the Majorana mode

could be detected (using, e.g., noise (91), interferometry (92,93)) and on collective

behavior of Majoranas, e.g., in a random system of vortices (94) or an array (95)).

There are analogous ways to create a Majorana fermion using strong spin-orbit

quantum wells rather than topological insulators (96, 97, 98). These ideas for

probes may also be helpful in understanding whether CuxBi2Se3 (39, 99) is a

topological superconductor.

We have tried to convey that, only two years after the first experimental paper

on topological insulators, work in this field is proceeding on many fronts. Our
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basic ideas of such established concepts as spin-orbit coupling and band struc-

ture have already had to be rethought, and there are good reasons to anticipate

further advances in our understanding. The authors have enjoyed too many col-

laborations and discussions in this field to acknowledge all by name; they are

especially grateful to their colleagues for creating stimulating academic environ-

ments at Princeton (MZH) and Berkeley (JEM). Funding was provided by DOE

and NSF (MZH) and by NSF DMR-0804413 and WIN (JEM).
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Topological surface states in Bi1−xSbx: Topological insulator Bi-

Sb alloy exhibits odd number of surface state crossings between

any pair of Kramers’ points. (a) Bi-Sb alloy in the semiconducting

composition range (0.07 < x < 0.18) exhibits odd number of sur-

face state Fermi crossings in between any pair of Kramers’ points.

Bi0.9Sb0.1 features 5 such Fermi crossings where each band is non-

degenerate. Surface state crossings along one such Kramers’ pair

Γ-M are shown. Detailed ARPES results suggest that semicon-

ducting Bi-Sb alloys belong to the Z2 = -1 topological class (1) and

it is the only known topological insulator that has non-trivial weak

invariants (15). (b) A schematic of the 3D Brillioun zone and its

(111) hexagonal surface projection is shown. (c) Resistivity profile

of pure Bi (semimetallic) is compared with semiconducting Bi-Sb

alloy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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Fermi surface spin-textures: Topological surfaces exhibit non-trivial

spin-textures. Spin-resolved photoemission directly probes the

topological character of the spin-textures of the surface. (a) A

schematic of spin-ARPES measurement set up is shown which was

used to measure the spin distribution mapped on the (111)-surface

Fermi surface of Bi0.91Sb0.09. Spin orientations on the surface cre-

ate a vortex-like structure around Γ-point. A net Berry’s phase

π is extracted from the full Fermi surface data measured over the

Bi1−xSbx to Sb. (b) A minimal topology of the band-structure is

shown in an schematic based on the systematic data. (c) Relative

spin distributions are shown per surface band. (d) Net polarization

along x-, y- and z- directions are shown. Pz∼0 suggests that spins

lie mostly within the surface plane (Adapted from Hsieh et.al, (19). 45

Absence of backscattering: Quasiparticle Interference observed in

Bi-Sb alloy surface exhibits absence of elastic backscattering: (a)

Spatially resolved conductance maps of the Bi0.92Sb0.08 (111) sur-

face obtained at 0 mV over a 1000Å×1000Å. (b) ARPES intensity

map of the surface state measured at the Fermi level. The spin

textures from spin-ARPES measurements are shown with arrows,

and high symmetry points are marked Γ and three Ms). (c) The

Fourier transform scanning tunneling spectroscopy (FT-STS) at

EF . (d) The joint density of states (JDOS) at EF . (e) The spin-

dependent scattering probability(SSP) at EF . (f) Close-up view of

the from JDOS, FT-STS and SSP at EF , along the Γ-M direction.

(Adapted from Roushan et.al., (20) and Hsieh et.al., (19). . . . . . 46
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Single Dirac cone fermions: Spin-momentum locked helical surface

Dirac fermions are hallmark signatures of bulk topological Z2 or-

der. The single-Dirac-cone per surface topological insulators be-

long to the (νo=1,000) topological class. (a) Surface dispersion

relation of electronic states reveal a spin-polarized Dirac cone.

(b) Surface Fermi surface exhibits chiral left-handed spin textures.

Schematic presentations of (c) surface and bulk band topology and

(d) a single spin-polarized Dirac fermion on the surface of Bi2X3

(νo=1,000) topological insulators. (e) Constant-energy deposition

maps of the surface state are labeled with spin texture. (Adapted

from Xia et.al., (21,22); Hsieh et.al., (23)) . . . . . . . . . . . . . . 47

Surface Dirac points are protected by time reversal symme-

try: (a) The surface state dispersion is compared before and after

deposition, using hollow circles to indicate data and lines to trace

ideal Dirac dispersions. After deposition, the upper Dirac cone

gains a mass of 0.1 electron masses. (b) The evolution of Bi2Se3

surface states as a function of surface Fe deposition is shown for

a p-type Bi2Se3 sample hole doped with 0.25% Ca. (c, left) A z-

axis magnetic perturbation causes (green) GGA predicted surface

states to conform to the iron doped dispersion. (right) A surface

insulator phase can likely be obtained by adding a non-magnetic

p-type surface dopant such as NO2 subsequent to Fe deposition.

(d) A cartoon illustrates the charge and magnetic perturbations

caused by Fe deposition on the TI surface. . . . . . . . . . . . . . . 48
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Superconductivity in doped topological insulators: (a) Super-

conductivity in Cu-doped Bi2Se3 with transition temperature of

3.8K. (b) Meissner transition. (c) Topologically protected surface

states cross the Fermi level before merging with the bulk valence

and conduction bands in superconducting Cu0.12Bi2Se3. (d) If the

superconducting wavefunction has even parity, the Fermi level will

be fully gapped and vortices on the crystal surface will host braid-

able Majorana fermions. (e) If superconducting parity is odd (∆2

state), the material will be a “topological superconductor”, and

new gapless states will appear below TC . (f) Majorana fermion

surface vortices are found at the end of bulk vortex lines and might

be adiabatically manipulated for quantum computation if super-

conducting pairing is even (∆1) . . . . . . . . . . . . . . . . . . . . 49

Half-Heusler family of topological insulators Topological band in-

version strengths are plotted as a function of the product of the

unit-cell volume (V)and the sum of the nuclear charges of M’ and

X atoms for several classes of half-Heuslers. The inversion strength

is defined as the energy difference between the G8 and G6 states at

the G point. Negative values denote absence of inversion. Materi-

als with positive band inversion strength are candidates for topo-

logical insulators with Z2=-1 once the lattice symmetry is broken.

LuPtBi, YPtBi and LaPtBi possess the most stable inverted Z2=-1

type bulk band structures. (Lin et.al., (35)) . . . . . . . . . . . . 50
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(Color online) The honeycomb lattice on which the tight-binding model

graphene Hamiltonian of Kane and Mele (59) is defined. For the

two sites depicted, the factor νij of equation (8) is νij = −1. The

phases φx,y describe twisted boundary conditions that can be used

to give a pumping definition of the Z2 invariant in the disordered

case. (From Essin and Moore (61).) . . . . . . . . . . . . . . . . . 51

(Color online) The creation of Majorana fermions in the layer of uncon-

ventional superconductivity between an ordinary s-wave supercon-

ductor and a topological insulator (90). A vortex core traps one
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Figure 1: Topological surface states in Bi1−xSbx: Topological insulator

Bi-Sb alloy exhibits odd number of surface state crossings between any pair of

Kramers’ points. (a) Bi-Sb alloy in the semiconducting composition range (0.07

< x < 0.18) exhibits odd number of surface state Fermi crossings in between any

pair of Kramers’ points. Bi0.9Sb0.1 features 5 such Fermi crossings where each

band is non-degenerate. Surface state crossings along one such Kramers’ pair Γ-

M are shown. Detailed ARPES results suggest that semiconducting Bi-Sb alloys

belong to the Z2 = -1 topological class (1) and it is the only known topological

insulator that has non-trivial weak invariants (15). (b) A schematic of the 3D

Brillioun zone and its (111) hexagonal surface projection is shown. (c) Resistivity

profile of pure Bi (semimetallic) is compared with semiconducting Bi-Sb alloy.



Three-Dimensional Topological Insulators 45

-0.2

-0.1

0.0

0.1

-0.2

0.0

0.2

D
eg

1.21.00.80.60.40.20.0-0.2-0.2 0.0 0.2 0.4 0.6

-0.2

0.0

0.2

k (Å  )x
-1

0.8 1.0 1.2

M

k
(Å

  
)

y
-1

Berry’s Phase π

EF

E bulk conduction band

bulk valence band

spin down

spin up

0.0

-0.1

-0.2

0.1

r1l2l3l4,5

G-0.2-0.4-0.6-M
k (Å  )x

-1

l1

Bi Sb0.91 0.09

E
  

(e
V

)
B

l2

l1

r
1

r2

-1 0 1

-1

0

1

 

 

 
0.0 1.0

-1.0

0.0

1.0

 

 

 

0-1 1 0 1

-1

0

1

-1

0

1

Px

Py P z

Pin plane

G Mkx(a) (b)

(c) (d)

Spin Polarization Distribution

νi={1,111}

Figure 2: Fermi surface spin-textures: Topological surfaces exhibit non-

trivial spin-textures. Spin-resolved photoemission directly probes the topological

character of the spin-textures of the surface. (a) A schematic of spin-ARPES

measurement set up is shown which was used to measure the spin distribution

mapped on the (111)-surface Fermi surface of Bi0.91Sb0.09. Spin orientations on

the surface create a vortex-like structure around Γ-point. A net Berry’s phase π

is extracted from the full Fermi surface data measured over the Bi1−xSbx to Sb.

(b) A minimal topology of the band-structure is shown in an schematic based on

the systematic data. (c) Relative spin distributions are shown per surface band.

(d) Net polarization along x-, y- and z- directions are shown. Pz∼0 suggests that

spins lie mostly within the surface plane (Adapted from Hsieh et.al, (19).
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Figure 3: Absence of backscattering: Quasiparticle Interference observed in

Bi-Sb alloy surface exhibits absence of elastic backscattering: (a) Spatially re-

solved conductance maps of the Bi0.92Sb0.08 (111) surface obtained at 0 mV over

a 1000Å×1000Å. (b) ARPES intensity map of the surface state measured at the

Fermi level. The spin textures from spin-ARPES measurements are shown with

arrows, and high symmetry points are marked Γ and three Ms). (c) The Fourier

transform scanning tunneling spectroscopy (FT-STS) at EF . (d) The joint den-

sity of states (JDOS) at EF . (e) The spin-dependent scattering probability(SSP)

at EF . (f) Close-up view of the from JDOS, FT-STS and SSP at EF , along the

Γ-M direction. (Adapted from Roushan et.al., (20) and Hsieh et.al., (19).
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Figure 4: Single Dirac cone fermions: Spin-momentum locked helical surface

Dirac fermions are hallmark signatures of bulk topological Z2 order. The single-

Dirac-cone per surface topological insulators belong to the (νo=1,000) topological

class. (a) Surface dispersion relation of electronic states reveal a spin-polarized

Dirac cone. (b) Surface Fermi surface exhibits chiral left-handed spin textures.

Schematic presentations of (c) surface and bulk band topology and (d) a single

spin-polarized Dirac fermion on the surface of Bi2X3 (νo=1,000) topological in-

sulators. (e) Constant-energy deposition maps of the surface state are labeled

with spin texture. (Adapted from Xia et.al., (21,22); Hsieh et.al., (23))
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Figure 5: Surface Dirac points are protected by time reversal symmetry:

(a) The surface state dispersion is compared before and after deposition, using

hollow circles to indicate data and lines to trace ideal Dirac dispersions. After

deposition, the upper Dirac cone gains a mass of 0.1 electron masses. (b) The

evolution of Bi2Se3 surface states as a function of surface Fe deposition is shown

for a p-type Bi2Se3 sample hole doped with 0.25% Ca. (c, left) A z-axis magnetic

perturbation causes (green) GGA predicted surface states to conform to the iron

doped dispersion. (right) A surface insulator phase can likely be obtained by

adding a non-magnetic p-type surface dopant such as NO2 subsequent to Fe

deposition. (d) A cartoon illustrates the charge and magnetic perturbations

caused by Fe deposition on the TI surface.
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Figure 6: Superconductivity in doped topological insulators: (a) Super-

conductivity in Cu-doped Bi2Se3 with transition temperature of 3.8K. (b) Meiss-

ner transition. (c) Topologically protected surface states cross the Fermi level

before merging with the bulk valence and conduction bands in superconducting

Cu0.12Bi2Se3. (d) If the superconducting wavefunction has even parity, the Fermi

level will be fully gapped and vortices on the crystal surface will host braidable

Majorana fermions. (e) If superconducting parity is odd (∆2 state), the mate-

rial will be a “topological superconductor”, and new gapless states will appear

below TC . (f) Majorana fermion surface vortices are found at the end of bulk

vortex lines and might be adiabatically manipulated for quantum computation if

superconducting pairing is even (∆1)
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Figure 7: Half-Heusler family of topological insulators Topological band

inversion strengths are plotted as a function of the product of the unit-cell volume

(V)and the sum of the nuclear charges of M’ and X atoms for several classes of

half-Heuslers. The inversion strength is defined as the energy difference between

the G8 and G6 states at the G point. Negative values denote absence of inversion.

Materials with positive band inversion strength are candidates for topological

insulators with Z2=-1 once the lattice symmetry is broken. LuPtBi, YPtBi and

LaPtBi possess the most stable inverted Z2=-1 type bulk band structures. (Lin

et.al., (35))
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graphene Hamiltonian of Kane and Mele (59) is defined. For the two sites de-

picted, the factor νij of equation (8) is νij = −1. The phases φx,y describe

twisted boundary conditions that can be used to give a pumping definition of the

Z2 invariant in the disordered case. (From Essin and Moore (61).)
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Polarization Magnetoelectric

polarizability

dmin 1 3

Observable P = ∂〈H〉/∂E Mij = ∂〈H〉/∂Ei∂Bj

= δijθe
2/(2πh)

Quantum ∆P = eR/Ω ∆M = e2/h

Surface q = (P1 −P2) · n̂ σxy = (M1 −M2)

EM coupling P ·E ME ·B

Chern-Simons form Ai ǫijk(AiFjk + iAiAjAk/3)

Chern form ǫij∂iAj ǫijklFijFkl

Quantizing symmetry Inversion Inversion or T

Additional contributions? No Yes

Table 1: Comparison of Berry-phase theories of polarization and magnetoelectric

polarizability.
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Majorana states

SC

TI

Figure 9: (Color online) The creation of Majorana fermions in the layer of un-

conventional superconductivity between an ordinary s-wave superconductor and

a topological insulator (90). A vortex core traps one Majorana fermion mode in

its vicinity at each interface.
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