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Quantum spin liquids∗Grégoire Misgui
hInstitut de Physique ThéoriqueCEA, IPhT, CNRS, URA 2306F-91191 Gif-sur-Yvette, Fran
eAbstra
tThese notes are an introdu
tion to a few sele
ted theoreti
al ideas in the �eld of quantumspin liquids: 
lassi
al zero modes and breakdown of the 1/S expansion, the Lieb-S
hultz-Mattis-Hastings theorem and Oshikawa's argument, the short-ranged resonating valen
e-bondpi
ture, large-N limit (S
hwinger bosons) and Z2 gauge theory.Contents1 Introdu
tion: band and Mott insulators 12 Some materials without magneti
 order at T = 0 33 Spin wave theory, zero modes and breakdown of the 1/S expansion 43.1 Holstein-Primako� representation . . . . . . . . . . . . . . . . . . . . . . . . . . 43.2 Bogoliubov transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.3 Zero modes on the kagome latti
e . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Lieb-S
hultz-Mattis theorem, and Hastings's extension to D > 1: groundstate degenera
y in gapped spin liquids 84.1 Oshikawa's topologi
al argument . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Anderson's short range resonating valen
e-bond pi
ture 106 S
hwinger bosons, large-N limit, and Z2 topologi
al phase 126.1 S
hwinger bosons representation . . . . . . . . . . . . . . . . . . . . . . . . . . 126.2 Mean �eld approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126.3 Large N , saddle point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.4 Flu
tuations about a saddle point and gauge invarian
e . . . . . . . . . . . . . 156.5 Z2 gauge �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166.6 A simple e�e
tive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176.7 Tori
 
ode limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Introdu
tion: band and Mott insulatorsDepending on the 
ontext (experiments, theory, simulations,...), �Quantum spin liquid� issometimes used with rather di�erent meanings. But let us start with a �rst simple de�nition:the ground state of a latti
e quantum spin model is said to be a quantum spin liquid (QSL)if it spontaneously breaks no symmetry. A

ording to this �rst de�nition, a QSL is realized ifthe spins fail to develop any kind of long range order at zero temperature (T = 0) (hen
e theword �liquid�, as opposed to solids whi
h are ordered and break some symmetries). Of 
ourse,this �rst de�nition raises a number of questions: Does this de�ne new distin
t states of matter
∗Le
tures given at the Les Hou
hes summer s
hool on �Exa
t Methods in Low-dimensional Statisti
al Physi
sand Quantum Computing� (July 2008). 1
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? Do QSL have some interesting properties ? Are there some experimental examples ? Toanswer these questions, it is useful to go ba
k to the origin of magnetism in insulators.Generally speaking, there are two kinds of insulators: band insulators, andMott insulators.The �rst ones 
an be qualitatively understood from the limit of non-intera
ting (or weaklyintera
ting) ele
trons. Consider for instan
e a periodi
 latti
e1 with an even number n ofsites per unit 
ell, with an average ele
tron density of one ele
tron per site (so-
alled half�lling). The Hamiltonian des
ribing how the ele
trons hop from sites to sites looks like
HK = −t

P

〈i,j〉,σ=↑,↓

“

c†iσciσ + H.c
”, where only �rst neighbor hopping is 
onsidered forsimpli
ity. H 
an be diagonalized in Fourier spa
e and gives n dispersing bands. The groundstate is just the Fermi sea obtained by �lling the lowest energy states. Sin
e the densityis one ele
tron per site, the n/2 lowest energy bands are 
ompletely �lled (one up and onedown ele
tron for in ea
h single parti
le state). Assuming that the band n/2 + 1 is separatedby a gap ∆ in energy from the n/2 lower bands, all the ex
itations are gapped and, attemperatures smaller than the gap, there is no 
harge 
arrier to 
arry an ele
tri
 
urrent.This is the well known pi
ture for a band insulator: there are no low energy 
harge degreesfreedom, no magneti
 (spin) degrees of freedom, the ground state (Fermi sea) is unique andbreaks no symmetry. To get some interesting QSL, we should instead look at Mott insulators.There, the number of sites per unit 
ell is odd and the non-intera
ting limit is unable togive the 
orre
t insulating behavior (at least one band is partially �lled, hen
e with lowenergy 
harge ex
itations). It is more useful to look at the system in the opposite limitof very large ele
tron-ele
tron repulsion, as with the large U limit of the Hubbard model:

H = HK + U
P

i, c
†
i↑ci↑c

†
i↓ci↓. At U = ∞ and t = 0 (still at half �lling), the ground stateis highly degenerate (= 2V , where V is the total number of sites) sin
e any state with oneele
tron per site is a ground state, whatever the spins orientations. To des
ribe how thisdegenera
y is lifted at weak but �nite t/U , a se
ond order perturbation has to be 
omputed.2The result is an e�e
tive Hamiltonian a
ting in the subspa
e spin 
on�gurations, and takesthe form of a quantum spin- 1

2
Heisenberg model:

H =
1

2

X

ij

Jij
~Si · ~Sj (1)where Jij = t2ij/U involves the hopping amplitude tij between sites i and j and measures thestrength of the antiferromagneti
 (AF) intera
tion between the (ele
tron) spins ~Si and ~Sj .3Although the model of Eq. 1 is in general a 
ompli
ated quantum many body problemwith very few exa
t results,4 its ground state and low energy properties are qualitatively wellunderstood in many 
ases. In parti
ular, the ground state 
an be antiferromagneti
ally ordered(also 
alled Néel state). Su
h state 
an be approa
hed from a semi 
lassi
al point of viewdes
ribed in Se
. 3: the spins point well de�ned dire
tions and form a regular stru
ture. Mostof the Mott insulators studied experimentally belong to this family. The simplest exampleis the nearest neighbor Heisenberg model on bipartite latti
es su
h as the square, 
ubi
 orhexagonal latti
es. There, on average, all the spins of the sublatti
e A point in dire
tion

+~S0 (spontaneous symmetry breaking of the SU(2) rotation symmetry), and all the spins ofsublatti
e B point in dire
tion −~S0. The di�eren
e with a 
lassi
al spin 
on�guration is thatthe magnetization of one sublatti
e (it is the order parameter for a Néel state) is redu
ed bythe quantum zero-point �u
tuations of the spins, even at T = 0. Su
h ordered states are notQSL (they might instead be 
alled spin �solids�) sin
e they break the rotation symmetry.The main question addressed in these notes is the fate of the ground state of Eq. 1 when thelatti
e and the intera
tions Jij are su
h that the spins fail to develop any su
h Néel orderedstate. A state without any order is not ne
essarily interesting from a theoreti
al point of1We use a tight binding model where the solid is modeled by one state per site, negle
ting (or, more pre
isely,integrated out) �lled orbitals or high energy empty states.2At �rst order in t, a single ele
tron hopping inevitably leads to a doubly o

upied site.3In real materials, there are often tens or hundreds of ele
tron per unit 
ell, several ions and many atomi
orbitals. Although the des
ription of the magneti
 properties in terms of latti
e spin models if often very a

urate,the spin-spin intera
tions is often more 
ompli
ated than this antiferromagneti
 Heisenberg model. It is quitefrequent that some intera
tions violate the SU(2) symmetry of the Heisenberg model, due to spin-orbit 
ouplingsin a 
rystalline environment. In these notes, we fo
us on models with an SU(2) symmetry.4In these notes, we fo
us here on dimension D > 1, but mu
h more is known about one-dimensional (1D) spin
hains. 2



view. For instan
e, a spin system at very high temperature is 
ompletely disordered and doesnot have any ri
h stru
ture. As we will see, the situation in Mott insulators at T = 0 is
ompletely di�erent. A �rst hint that Mott QSL host some interesting topologi
al propertieswill be dis
ussed in Se
. 4 (Lieb-Shultz-Mattis [1℄ Hastings [2℄ theorem). A 
on
rete (butqualitative) pi
ture for QSL wave fun
tions is given in Se
. 5, in terms of short range valen
ebond 
on�gurations and de
on�ned spinons (magneti
 ex
itations 
arrying a spin 1
2
). Finally,Se
. 6, presents a formalism whi
h puts some of the ideas above on �rmer grounds. It isbased on a large-N generalization of the Heisenberg models (SU(2) → Sp(N)) whi
h allowto des
ribe some gapped QSL and to establish a 
onne
tion by topologi
ally ordered state ofmatter, su
h as the ground state of Kiatev's tori
 
ode [3℄.2 Some materials without magneti
 order at T = 0There are many magneti
 insulators that do order at T = 0.5 For instan
e, the magneti
,properties of many 
ompounds are des
ribed by 1D spin 
hains of spin ladder Hamiltonians.Thanks to the Mermin-Wagner theorem and the redu
ed dimensionality, these system 
annotdevelop long range spin-spin 
orrelations, even at T = 0.6 They 
ertainly deserves to be 
alledQSL and represent a very ri
h �eld of a
tivity. In these notes we will instead fo
us on QSLin D > 1 systems, where our present understanding is less 
omplete.CaV4O9 is the �rst Heisenberg system in D > 1 where the magneti
 ex
itations wereexperimentally shown to be gapped, in 1995 [4℄. This 
ompound 
an be modeled by an an-tiferromagneti
 spin- 1

2
Heisenberg model on a depleted square latti
e where one site out of�ve is missing (Fig. 1). The remaining sites 
orrespond to the lo
ations of the Vanadiumions, whi
h 
arry the magneti
ally a
tive ele
trons (spins). The magneti
 intera
tions Jijturned out to be signi�
ant not only between nearest neighbors, but also between se
ondnearest neighbors (the ele
tron hops through oxygen orbitals, whi
h have a 
omplex geome-try). Through magneti
 sus
eptibility measurements, it was shown that the ground state isa rotationally invariant spin singlet, thus ex
luding any Néel ordering. This QSL behavior
an be understood by taking a limit where only the strongest Jij are kept, and the other areset to zero. It turns out these strongest 
ouplings are between se
ond-nearest neighbors, andform a set of de
oupled four-site plaquettes (of area √

2×
√

2 and surrounding a missing site).Sin
e the ground state of su
h a four-site Heisenberg 
luster is a unique singlet S = 0 state,separated by a gap from other states, the model is trivially a gapped and without any brokensymmetry in this limit. But this is not the kind of QSL we want to fo
us on here, sin
e it
an be adiabati
ally transformed into a band insulator. Swit
hing o� the ele
tron-ele
tronintera
tions would make the system metalli
, but one 
an pro
eed in a di�erent way. Startingwith realisti
 values of the Jij , the inter plaquette 
ouplings are gradually turned o�. Doingso, one 
an 
he
k (numeri
ally for instan
e) that the spin gap does not 
lose and no (quantum)phase transition in en
ountered. Then, in this systems of de
oupled four-ele
tron 
luster, theHubbard repulsion U 
an be swit
hed to zero, without 
ausing any phase transition. The �nalmodel is evidently a band insulator and smoothly 
onne
ted to the initial Heisenberg model.Sin
e then, numerous 2D and 3D (Heisenberg) magneti
 systems with an even numberof spin- 1
2
per unit 
ell have been found to be gapped. To our knowledge, their ground state
an be qualitatively understood from a limit of weakly 
oupled 
lusters in all 
ases and 
antherefore be �
lassi�ed� as band insulators (as CaV4O9 above). Some of them 
an be veryinteresting for di�erent reasons,7 but their ground states are not fundamentally new states ofmatter.In the re
ent years, experimentalists have also un
overed a number of materials whi
h arewell des
ribed by 2D Heisenberg models with an odd number of spin- 1

2
per 
rystal unit 
ell,8and whi
h do not develop any Néel order when T → 0. Some examples are the Herbertsmithite5Some order at a temperature with is very small 
ompared the typi
al energy s
ale of the Heisenberg spin-spinintera
tions. This is often due to perturbations that are not in
luded in the simplest Heisenberg model des
ription.6Due to some residual 3D 
ouplings, there 
an be a �nite temperature phase transition to an ordered state atvery low temperature.7For instan
e: TlCuCl3 [6℄ is 
oupled dimer system with a Bose-Einstein 
ondensation of magneti
 ex
itationsin presen
e of an external magneti
 �eld, and SrCu3(BO3)2 [5℄ has a magnetization 
urve with quantized plateaus.8In su
h 
ase, the absen
e of long range order 
annot be attributed to some band insulator physi
s.3



Figure 1: Depleted square latti
e model for the magneti
 properties of CaV4O9. The di�erentex
hange energies are shown by di�erent types of line. The strongest J 
orrespond to the fat linesforming the large tilted square plaquettes.(ZnCu3(OH)6Cl2)9 [7℄ and Volborthite (Cu3V2O7(OH)2 ·2H2O)[8℄ minerals (both with akagome latti
e geometry), triangular based organi
s materials [9, 10℄, or triangular atomi
layers of He3 adsorbed onto graphite [11℄ (there the spin is not ele
troni
, but nu
lear). It turnsout that all these systems seem to have gapless magneti
 ex
itations and a 
omplete theoreti
alunderstanding of these system is still la
king. The present theories for gapless QSL are ratherelaborate [12℄ and many questions remain open (stability, nature of the ex
itations, 
orrelationexponents, et
.). However, as we will see, gapped QSL are simplest from a theoreti
al pointof view. Intriguingly, to our knowledge, no gapped QSL has been dis
overed so far in nature,although many spin models do have gapped QSL ground states.3 Spin wave theory, zero modes and breakdown ofthe 1/S expansionTo understand why an AF Heisenberg spin model 
an fail to order at zero temperature, is isuseful to brie�y review the standard approa
h to Néel phases: the semi-
lassi
al 1/S spin-waveexpansion [13℄. This approa
h i) starts from a 
lassi
al spin 
on�guration whi
h minimizes theHeisenberg intera
tion ii) assumes that the quantum deviations from this ordered dire
tionare small iii) treats this deviations as 
olle
tion of harmoni
 os
illators (the leading term in a
1/S expansion). In this approximation the Hamiltonian is written using boson 
reation andannihilation operators, is quadrati
, and 
an be diagonalized by a Bogoliubov transformation.One 
an then 
he
k a posteriori if the spin deviations are indeed small. If it is not the 
ase,we have a strong indi
ation that the magneti
 long range order is in fa
t �destroyed� by thequantum �u
tuations, thus opening a route for a QSL ground state.3.1 Holstein-Primako� representationThe starting point is the representation of the spin operators using Holstein-Primako� [14℄bosons

Sz
i = S − a†

i ai , S+ =

q

2S − a†
i ai ai , S− = a†

i

q

2S − a†
i ai, (2)from whi
h on 
an 
he
k that the 
ommutation relations [Sα

i , Sβ
i ] = iǫαβδSδ

i and ~S2
i = S(S+1)are satis�ed (using [ai, a

†
i ] = 1).Let {~zi} be a 
lassi
al ground state of Eq. 1, minimizing E = 1

2

P

ij Jij~zi · ~zj with ~z2
i = 1.These dire
tions 
an be used as lo
al quantization axes: we use Eq. 2 in a lo
al (orthogonal)frame (~xi, ~yi, ~zi = ~xi ∧ ~yi) adapted to the 
lassi
al ground state. Under the assumption that

~Si shows small deviations from the 
lassi
al ve
tor S~zi, the typi
al number 〈a†a〉 of Holstein-Primako� bosons should be small 
ompared to S. We 
an therefore simplify S+ (and S−) in9Although the spin-spin intera
tion strength is of the order of J ∼ 200 K, no order has be found down to 50mK.4



Eq. 2 by keeping only √
2S in the square roots, to obtain [13℄

~Si ≃
„

(S +
1

2
) − ~π2

i

«

~zi +
√

2S~πi (3)where
~πi =

1

2
(ai + a†

i )~xi +
1

2i
(ai − a†

i )~yi (4)
~π2

i = a†
i ai +

1

2
(5)

and ~zi · ~πi = 0. (6)Repla
ing Eq. 3 in the Hamiltonian gives
H =

1

2
(S +

1

2
)2

X

ij

Jij ~zi · ~zj + S
X

ij

Jij ~πi · ~πj

−1

2
S

X

ij

Jij

`

~π2
i + ~π2

j

´

~zi · ~zj + O(S0). (7)The �rst term is a 
onstant, proportional to the 
lassi
al energy E0. The two other terms,proportional to S, are quadrati
 in the boson operators and des
ribe the spin �u
tuationsas a set of 
oupled harmoni
 os
illators.10 The positions qi = 1√
2
(ai + a†

i ) and momenta
pi = 1√

2i
(ai − a†

i ) operators of these os
illators 
an be 
onveniently grouped into a 
olumnve
tor of size 2N (N is the total number of spins):
V =

2

6

6

6

6

6

6

4

q1

:
qN

p1

:
pN

3

7

7

7

7

7

7

5

(8)so that H be
omes
H = (S +

1

2
)2E0 +

S

2
V

tMV, (9)where M is a 2N × 2N matrix given by
M =

»

Jxx − Jzz Jxy

(Jxy)t Jyy − Jzz

– (10)and the N × N matri
es Jxx, Jyy, Jxy and Jzz are de�ned by:
Jxx

ij = Jij ~xi · ~xj , Jyy
ij = Jij ~yi · ~yj , Jxy

ij = Jij ~xi · ~yj (11)
and Jzz

ij = δij

X

k

Jik~zi · ~zk. (12)3.2 Bogoliubov transformationDiagonalizing H amounts to �nd bosoni
 
reation operators b†α and 
orresponding energies
ωα ≥ 0 su
h that H =

P

α ωα

`

b†αbα + 1
2

´ (up to a 
onstant). A ne
essary 
ondition is that theoperator b†α and bα are �eigenoperators� of the 
ommutation with H , for the eigenvalues ωαand −ωα respe
tively: ˆ

H, b†α
˜

= ωαb†α and [H, bα] = −ωαbα. We thus seek the eigenve
torsof the a
tion of [H, •] in the spa
e of linear 
ombinations of qi and pj . The 
ommutators of
H (Eq. 9) with the operators q and p are simple to obtain using [qi, qj ] = [pi, pj ] = 0 and10Due to the fa
t that {~zi} minimizes the 
lassi
al energy, P

j Jij~zj is perpendi
ular to ~zi and thus orthogonalto ~πi, and there is no term linear in ~π. 5



[qi, pj ] = iδij . For an arbitrary linear 
ombinations of the qi qnd pi parametrized by the
omplex numbers x1, · · · , x2N the result is
[H,x1q1 + xNqN + xN+1p1 + · · ·x2NpN ]

= y1q1 + yNqN + yN+1p1 + · · · y2NpN (13)with the 
oe�
ients y1, · · · , y2N given by
2

6

4

y1...
y2N

3

7

5

= iS M

2

4

0 1

−1 0

3

5

2

6

4

x1...
x2N

3

7

5

(14)where 1 is the N × N identity matrix. So, �nding the operators b†α (spin-wave 
reationoperators) amounts to �nd the eigenve
tors of the �
ommutation matrix� C = iM
»

0 1

−1 0

–.But C is not symmetri
 and 
annot always be fully diagonalized (
ontrary to M). It 
anbe shown that if all the eigenvalues of M were stri
tly positive, C 
ould be diagonalized, itseigenvalues would be real and 
ome in pairs −ω,ω.11However, M does have some zero eigenvalues. The matrix M is not spe
i�
 to thequantum spin problem. The quadrati
 form des
ribing the 
lassi
al energy variation for a smallperturbation around the 
hosen 
lassi
al ground state {~zi}, is des
ribed by the same matrix
M.12 In parti
ular, if the 
lassi
al ground state admits some zero energy (in�nitesimal) spinrotations, M posses some eigenve
tor for the eigenvalue 0. Be
ause global rotations shouldnot 
hange the energy, M has at least two zero eigenvalues. Still, these global rotations do not
ause di�
ulties in diagonalizing the spin-wave Hamiltonian, they just 
orrespond to some
ωα = 0 (the asso
iated 
olle
tive 
oordinate Q and 
onjugate momentum P simply do notappear in H).3.3 Zero modes on the kagome latti
eHowever, some Heisenberg models admit 
lassi
al zero modes (hen
e zero eigenvalues in M)whi
h do not 
orrespond to global rotations. As an example, 
onsider the Heisenberg modelon the kagome latti
e [15℄ (for another 
lassi
 example, the J1-J2 model on the square latti
e,see [16℄). Any 
lassi
al spin 
on�guration su
h that the sum ~zi + ~zj + ~zk vanishes on ea
htriangle (ijk) minimizes the 
lassi
al energy. Among the numerous ways to a
hieve these
onditions, are the planar ground states, where all the spins lie in the same plane. In su
ha state, the spins take only three possible dire
tions, ~a, ~b and ~c at 120 degrees from ea
hother. On the kagome latti
e, there is an exponential number of ways to assign these threeorientations su
h that the same letter is never found twi
e on the same triangle (three-
oloringproblem, see Fig. 2). Now, 
hoose one of these �abc� states, and �nd a 
losed loop of the type
ababab · · ·. Be
ause of the three-
oloring rule, the spins whi
h are neighbors of this loop allpoint in the ~c dire
tion. Now, we 
an rotate the spins of the loop about the ~c axis by any angle.This transforms the planar ground state into another (non planar) ground state, without anyenergy 
ost. So, for a generi
 planar ground state, we get as many zero modes (in M) as
losed loops with two alternating �
olors�. This number typi
ally grows like the number ofsites in the system.What are the 
onsequen
es of su
h 
lassi
al zero modes for the quantum problem ? Asexplained previously, the operators des
ribing the two transverse dire
tions along whi
h thespins 
an deviate from the ~zi axis obey the same 
ommutation rules (at leading order inthe 1/S expansion) as the position q and momentum p of an harmoni
 os
illator. In the
ase of the kagome loop modes dis
ussed above, the energy is zero in one dire
tion (rotation11Let P be an orthogonal matrix whi
h diagonalizes symmetri
 M : M = P−1λP , where λ is a diagonal matrixand PP t = 1. If the eigenvalues of M are stri
tly positive, K = P−1

√
λ is invertible and M = KKt. Wewrite C = iS KKt σ, where σ =

»

0 1

−1 0

–. Then, C̃ = K−1CK = iS Kt σK is Hermitian (sin
e σ is realantisymmetri
, and K is real). C̃ 
an therefore be diagonalized and its spe
trum is real. Sin
e C and C̃ have thesame spe
trum, C 
an also be diagonalized and has real eigenvalues. Finally, we use Ct = −C. Sin
e C and Ctshould have the same spe
trum, the eigenvalues of C go in pairs −ω, ω.12The Eqs. 3 and 7 also hold if ~πi is a 
lassi
al spin deviation of length ~π2
i ≪ 1.6
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Figure 2: Classi
al planar ground state on the kagome latti
e. The loops where the spins alternatebetween the ~a and ~b dire
tions are marked with dashed lines, they host independent zero modes(by rotation around the ~c axis).about the ~c dire
tion), and quadrati
 in the other dire
tion. Using the asso
iated 
olle
tive
oordinate P and Q, we expe
t the Hamiltonian to be proportional to H = 1
2
(P 2 + ω2Q2)with ω = 0, sin
e there is no 
lassi
al energy 
ost for spin deviation in the dire
tion Q. The
orresponding 
ommutation matrix is C = i

»

0 ω2

−1 0

– and 
annot be diagonalized when
ω = 0, as anti
ipated. In general, ea
h su
h lo
al zero mode will lead to an irredu
ible 2 × 2Jordan blo
k of this kind.13 The ground state |0〉 of the os
illator is simple to obtain and
orresponds to a zero point motion of the 
oordinate Q whi
h diverges when ω → 0 (norestoring for
e, like for a free parti
le) : 〈0|Q2|0〉 = 1

2ω
.As long as the the number of su
h zero modes is �nite in the thermodynami
 limit (thisis the 
ase when the 
lassi
al ground state has no spe
ial degenera
y, beyond those impliedby global rotations), the divergen
es above have a zero measure and do not 
ause divergen
esin the number of bosons 〈0|a†

i ai|0〉,14 whi
h measures the strength of the deviations fromthe 
lassi
al state. In su
h a 
ase, the Néel ordered state is stable with respe
t to quantum�u
tuations, at least for large enough S.15 On the other hand, if the number of su
h modesgrow like N , the average number of bosons diverge and the spin-wave expansion breaks down(the initial assumption that 〈0|a†
i ai|0〉 is �nite and small 
ompared to S 
annot be satis�ed).At this point, a route to obtain a QSL appears to look for a latti
e where the 
lassi
almodel has a su�
ient number of �soft� modes, so that the zero point motion of the spins restorethe rotation invarian
e and destroy the long range spin spin 
orrelations. This 
ondition isrealized on the kagome latti
e, where indeed all numeri
al studies 
on
luded to the absen
eof Néel order in this system (at least for S = 1

2
). However, the semi 
lassi
al spin wavetheory des
ribed here breaks down. As dis
ussed in the next se
tions, QSL states in Mottinsulators possess some internal topologi
al properties whi
h are missed by the simple pi
tureof a �disordered� state whi
h would just be the quantum analog of a high temperature phase.13The general theory for possible Jordan forms of C (size and nature of the irredu
ible blo
ks) is in fa
t a resultof 
lassi
al me
hani
s, found by Williamson and exposed in [17℄.14 〈0|a†

i ai|0〉 = 1
2
〈0|p2

i +q2
i −1|0〉 
an be 
omputed by expressing qi and pi in terms of b†α and bα, or in terms of thenew position and momenta Qα = 1√

2
(bα + b†α) and Pα = 1√

2i
(bα − b†α) Con
entrating on the term 〈0|q2

i |0〉, qi is alinear 
ombination of the type qi =
PN

α=1 ui
αQα +

PN
β=1 vi

βPβ , (u and v are related to the eigenve
tors of C). Fromthe fa
t that |0〉 is the va
uum of the bα bosons, we have 〈0|PiPj |0〉 = 〈0|QiQj |0〉 if i 6= j, and 〈0|PiQj +QjPi|0〉 = 0
∀i, j. Then the square of the spin deviation at site i (here the ~xi 
omponent) is a linear 
ombination of the zeropoint �u
tuations of the normal harmoni
 os
illators 〈0|q2

i |0〉 =
P

α(ui
α)2〈0|Q2

α|0〉 +
P

α(vi
α)2〈0|P 2

α|0〉. Assuminga regular behavior of the 
oe�
ient (ui
α)2 and (vi

α)2, 〈0|q2
i |0〉 is typi
ally the sum of terms proportional to ∼ 1/ωαwhen the mode frequen
y ωα is small.15This does not imply that the order should persists down to S = 1

2
.

7



x=0 x=1
x=L−1 x=2Figure 3: A latti
e model whi
h is translation invariant and periodi
 in the x dire
tion 
an beviewed as a ring. The intera
tions Jij , indi
ated by dashed lines, are invariant in the x dire
tionbut otherwise arbitrary. In this example, ea
h 
ross se
tion has C = 3 sites.4 Lieb-S
hultz-Mattis theorem, and Hastings's exten-sion to D > 1: ground state degenera
y in gapped spinliquidsThe Lieb-S
hultz-Mattis theorem [1℄ was originally derived for spin 
hains and spin ladders[18, 19℄ and was re
ently extended to higher dimensions in an important work by Hastings[2℄ (see also [20℄ for an intuitive topologi
al argument valid in any dimension, and [21℄ fora mathemati
ally rigorous proof). It applies to spin Hamiltonians whi
h are translationinvariant in one dire
tion (say x), have a 
onserved magnetization Sz

tot =
P

i Sz
i , and shortrange intera
tions. In addition, the model should have periodi
 boundary 
onditions in the xdire
tion. Although more general intera
tions 
an easily be 
onsidered,16 we 
on
entrate forsimpli
ity on spin-S Heisenberg models, written as in Eq. 1 (with Ji,j = Ji+x,j+x to respe
tthe translation invarian
e).Following [20℄, we de�ne the 
ross se
tion as all the sites sitting at a given value of x. Bytranslation invarian
e, all 
ross se
tions are equivalent and 
ontain C sites (Fig. 3). In a spin
hain, ea
h 
ross se
tion 
ontains a single site. In an n− leg spin ladder, C = n sites. In asquare latti
e, C = Ly. On a D-dimensional latti
e with n sites per unit 
ell, C = nLD−1,et
. We note Lx the system length in the x dire
tion, and therefore CLx is the total numberof sites. Finally we de�ne mz = 1

CLx
〈0|Sz

tot|0〉 as the ground state magnetization per site.The theorem says that if C(S+mz) is not an integer, the ground state is either degenerate,or the spe
trum has gapless ex
itations in the thermodynami
 limit. In other words, if
C(S + mz) /∈ Z the system 
annot have a unique ground state and a �nite gap to ex
itedstates in the thermodynami
 limit. Although the proof in 1D [1℄ and Oshikawa's topologi
alargument [20℄ (Se
. 4.1) are relatively simple, the proof appears quite involved for D > 1, andwill not be dis
ussed here.What is the relation between the LSMH theorem and QSL ? In most AF Heisenbergmodels on a �nite-size latti
e, |0〉 is a singlet and mz = 0. If we fo
us on the 
ase S = 1

2
,the theorem forbids a single ground state and a gap when C is odd. In parti
ular, if thelatti
e is two dimensional and des
ribes a Mott insulator, the unit 
ell has an odd number

n of sites and any odd Ly 
an be 
hosen to get and odd C = nLy (note that the totalnumber of sites is still even if Lx is even). If we assume that a gapped QSL is realized(for an example whi
h �ts in the LSMH 
onditions, see for instan
e [22℄), its ground statemust be degenerate (with periodi
 boundary 
onditions). Usually, ground state degenera
iesare the signature of some spontaneous symmetry breaking. However, by de�nition, a QSLrespe
t all latti
e symmetries. The degenera
y imposed by the LSMH theorem 
annot beunderstood from this 
onventional point of view and is a hint that (gapped) QSL wave fun
tionpossess some interesting topologi
al properties, whi
h 
orrespond to the notion of �topologi
alorder� introdu
ed by Wen [23, 24℄ for spin systems and Wen and Niu [25℄ in the 
ontext ofthe fra
tional quantum Hall e�e
t. As we will brie�y dis
uss at the end, this topologi
al16In parti
ular, the intera
tion 
an be anisotropi
: Sz
i Sz

j + ∆(Sx
i Sx

j + Sy
i Sy

j ), and an external magneti
 �eldparallel to the z dire
tion 
an be present. 8
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Figure 4: S
hemati
 spe
trum of the twisted Hamiltonian (Eq. 15) as a fun
tion the angle θ, inthe 
ase where C(S + mz) is a half integer.degenera
y is deeply related to the exoti
 nature of the elementary ex
itations in a QSL.174.1 Oshikawa's topologi
al argumentOshikawa's argument is somehow related to Laughlin's argument [26℄ for the quantizationof the transverse 
ondu
tivity in the quantum Hall e�e
t. First, a �twisted� version of theHamiltonian is introdu
ed:
Hθ =

1

2

X

ij

Jij

»

Sz
i Sz

j +
1

2

“

eiθ(xi−xj)/LxS+
i S−

j + H.c
”

– (15)where 0 ≤ xi < Lx is the x-
oordinate of site i. It is simple to show that the spe
tra of H0and H2π are the same, sin
e the unitary operator
U =

Y

i

exp

„

2iπ
xi

Lx
Sz

i

« (16)maps H0 onto H2π:
UH0U

−1 = H2π (17)(the 
al
ulation simply uses eiθSz
i S+

i e−iθSz
i = S+

i eiθ).Starting with a spe
trum of H0 whi
h is gapped, we further assume that the gap of Hθremains �nite when θ goes from 0 to 2π.18 On 
an follow the ground state of Hθ, whi
h doesnot 
ross any other energy level as θ is varied. Assuming that the ground state |0〉 of H0 isunique and using the �nite gap hypothesis, it must evolve to the ground state of H2π, denoted
|2π〉. Through Eq. 17, both states are related: |2π〉 = U−1|0〉. However, the operator U doesnot always 
ommute with the translation operator T and may 
hange the momentum. Thepre
ise relation is

TU = UT exp

„

2iπ
Sz

tot

Lx

«

exp (2iπCS) . (18)The �rst phase fa
tor, also equal to 2πCmz , 
omes from the shift by 2π/Lx of the lo
al rotationangles after a translation. The se
ond phase fa
tor 
orre
ts the 2π jump of the rotation anglewhen passing from x = Lx − 1 to x = 0. This relation implies that the momentum k0 of |0〉(de�ned by T |0〉 = eik0 |0〉) and the momentum k2π of |2π〉 = U−1|0〉 are related by
k0 = k2π + 2πC(S + mz) (19)But Hθ is translation invariant (
ommutes with T ) and the momentumof ea
h state (quantizedfor �nite Lx) 
annot 
hange with θ. So |0〉 and |2π〉 have the same momentum and k0 =

k2π [2π]. From Eq. 19, we get that C(S + mz) must be a integer.17QSL have �spinons� ex
itations whi
h 
arry a spin 1
2
(like an ele
tron) but no ele
tri
 
harge.18Hastings argument does not dire
tly use Hθ for a �nite θ and does not rely on this assumption. This assumptionis however reasonable by the fa
t that, under an appropriate 
hoi
e of gauge (frame), H = H0 and Hθ only di�erfor the terms 
onne
ting the 
ross se
tion at x = Lx − 1 to the 
ross se
tion at x = 0 (boundary terms), and areidenti
al in the bulk. 9



Figure 5: A short range valen
e bond state on the triangular latti
e. The singlet pairs are markedwith ellipses.5 Anderson's short range resonating valen
e-bond pi
-tureIn the 1/S expansion, it is assumed that the spins experien
e small �u
tuations about awell de�ned dire
tion and that spin-spin 
orrelations are long ranged. This is of 
oursein
ompatible with having a rotationally invariant QSL state. To gain some intuition aboutwhat a QSL wave fun
tion may look like, it is instru
tive to start from a 
ompletely oppositelimit: a spin singlet state with extremely short range 
orrelations. A short range valen
e-bond (VB) state is su
h a wave fun
tion, it is the dire
t produ
t of S = 0 states |[ij]〉 =
1√
2

(| ↑i↓j〉 − | ↓i↑j〉) on pairs of sites :
|VB〉 = |[i0i1]〉 ⊗ |[i2i3]〉 ⊗ |[i4i5]〉 ⊗ · · · |[iN−1iN ]〉 (20)where ea
h site of the latti
e appears exa
tly on
e (Fig. 5). Su
h a VB state is said to beshort range if all pairs of sites 
oupled in a singlet are at a distan
e |rip − rip+1

| smaller thanor equal to some �xed length rmax(mu
h smaller that the latti
e size). The simplest 
ase is
rmax = 1, where ea
h spin forms a singlet with one of its nearest neighbors.In a VB state, the spin-spin 
orrelations are short ranged: 〈VB|~Si · ~Sj |VB〉 = 0 if |rip −
rip+1

| > rmax. For a nearest neighbor Heisenberg model on a bipartite latti
e, one 
an 
omparethe (expe
tation value of the) energy of a nearest neighbor VB state, with that of the simpletwo-sublatti
e Néel state | ↑↓↑↓ · · ·〉. The VB energy is eVB = −J 3
8
per site and the Néelone is eN = −J z

8
, where z is the number of nearest neighbors. If the latti
e is not bipartitebut admits a three-sublatti
e 
lassi
al ground states (with spins pointing at 120 degrees fromea
h other), the energy of a 
lassi
al Néel state is eN = −J z

16
. From this, we observe forinstan
e that the VB energy is lower than eN on the kagome latti
e. More generally, thissimple variational 
omparison shows that a low 
oordination z and frustrated intera
tions(whi
h in
rease the number of sublatti
es in the 
lassi
al ground state) tend to favor VBstates, and thus possible QSL states.In fa
t there are many (frustrated and Heisenberg-like) toy models where some/the nearestneighbor VB states are exa
t ground states. The most famous example is the Majumdar-Goshmodel [27℄. Consider the spin- 1

2
Heisenberg 
hain with �rst- (J1) and se
ond- (J2) neighbor
ouplings. At J1 = 2J2 > 0 we have

HMG = 2
X

i

~Si · ~Si+1 +
X

i

~Si · ~Si+2 (21)and the (two-fold degenerate) ground states are exa
tly given:
|a〉 = · · · ⊗ |[01]〉 ⊗ |[23]〉 ⊗ |[46]〉 ⊗ · · · (22)
|b〉 = · · · ⊗ |[12]〉 ⊗ |[34]〉 ⊗ |[56]〉 ⊗ · · · (23)The proof 
an be done three steps. First, the Heisenberg Hamiltonian on three site Hijk =

~Si · ~Sj + ~Sj · ~Sk + ~Sk · ~Si is written as Hijk = 1
2
(~Si + ~Sj + ~Sk)2 − 9

8
. In this form, proportionalto the square of the total spin, it is 
lear that the eigenvalues of Hijk are 1

2
S(S + 1) − 9

8with S = 1
2
or S = 3

2
(the only possible values of S for three spin- 1

2
). So, if the sites ijk10



are in a S = 1
2
state, they minimize exa
tly Hijk. Se
ond, one expresses the Majumdar-GoshHamiltonian as

HMG =
X

i

Hi−1,i,i+1. (24)Finally, one remarks that the dimerized states |a〉 and |b〉 always have one singlet among thesites i − 1, i, i + 1, whi
h are therefore in a S = 1/2 state. We 
on
lude that |a〉 and |b〉minimize all the terms in Eq. 24 and are thus ground states of HMG.The Majumdar-Gosh model is the simplest model of a family of spin models where exa
tVB ground states 
an be found.19 For instan
e, the Husimi 
a
tus [30℄ is a latti
e 
onstru
tedas a tree (no loops) of 
orner sharing triangles. Its geometry is lo
ally similar to the kagomelatti
e but it has no 
losed loop (ex
ept of 
ourse for the triangles themselves). The argumentabove (writing the Hamiltonian as a sum of Hijk) dire
tly generalizes to this 
ase and showsthat any nearest neighbor VB state is a ground state. One 
an also mention the 2D Shastry-Sutherland Heisenberg model [31℄, where a parti
ular nearest neighbor VB is the uniqueground state, and whi
h has an experimental realization in SrCu2(BO3)2 [5℄.So far, we do not yet have any gapped liquid state.20 To obtain a qualitative idea of howVB states 
an be the building blo
ks of a gapped QSL, we will brie�y explain the short rangeresonating valen
e bond (RVB) pi
ture proposed by Anderson [32℄. If we ex
lude the toymodels dis
ussed above, a VB state is generally not an eigenstate of the Heisenberg model.Starting from a nearest neighbor VB state, the Heisenberg Hamiltonian will indu
e somedynami
s among the VB states. If we take the kagome example, a nearest neighbor VBstate inevitably 
ontains some �defe
t� triangles without any singlet.21 While the term Hijkleaves the VB state un
hanged if the 
orresponding triangle has a singlet bond, the three VBtou
hing i, j and k will be moved by Hijk if (ijk) is a defe
t triangle. The ground state
an be viewed as a linear 
ombination of (many) VB 
on�gurations (not ne
essarily nearestneighbor). Anderson suggested that, with appropriate intera
tions and latti
e geometry, theground state wave fun
tion 
ould be �delo
alized� over a large part of the subspa
e spannedby short range VB states. By forming a linear superposition of a large number of verydi�erent VB states, the system may restore all the latti
e symmetries (whi
h are broken byan individual VB state) and form a QSL.A more formal approa
h to this idea will be dis
ussed in Se
. 6, but this pi
ture 
analready be used to anti
ipate the nature of the magneti
 ex
itations in su
h a short rangeRVB liquid. To this end, we �rst 
onsider a 2D model where one ground state is equal to (ordominated by) one parti
ular VB state. Contrary to the Anderson's RVB liquid, the wavefun
tion is lo
alized in the vi
inity of one parti
ular VB state. It 
an be thought as a 2Danalog of the Majumdar Gosh 
hain, where the ground state is a spatially regular arrangementof singlet bonds. Many 2D models are known to realize su
h VB 
rystals (VBC) [33℄, andwe refer to Ref. [34℄ for a re
ent example where the exa
t ground states are known. Ina VBC, a �nite energy ex
itation 
an be 
reated by repla
ing a singlet bond by a triplet(S = 1), with an energy 
ost proportional to J . But is it possible to 
onstru
t two separatedspin- 1
2
ex
itations in su
h a system ? As a trial state, one 
an pla
e two remote spins �up�(two spinons ex
itations) at sites 0 and i. Then, to minimize the energy, the regular VBstru
ture of the ground state should be re
onstru
ted as mu
h as possible. However, dueto the spinons, the regular pattern 
annot be fully re
onstru
ted between 0 and i, and a"string" of misaligned VB is unavoidable. The unpaired spins behave as a topologi
al defe
tin the 
rystalline order. So, two remote spinons perturb the ordered VB ba
kground, notonly in their vi
inity, but all the way between them. They lead to an energy 
ost whi
h isproportional to their separation.22 So, isolated spinons are not �nite energy ex
itations in a19 There exists a general method for 
onstru
ting an SU(2) symmetri
 spin model with short range intera
tionssu
h that all the nearest neighbor VB states are ground states [28℄. Building on this idea, it was possible to
onstru
t SU(2) symmetri
 spin- 1

2
models (with short ranged intera
tion) with a gapped QSL ground state [29℄.Although 
ompli
ated, these models are among the very few examples where the ground state is well establishedto be a short ranged resonating VB liquid.20The ground states of HMG spontaneously break the translation symmetry. On the Husimi 
a
tus, the groundstate is highly degenerate. The Shastry-Sutherland ground state does not break any symmetry (the ground stateis unique), but the latti
e has an even number of spins per unit 
ell and should be 
onsidered as a band insulatorin our 
lassi�
ation.21Whatever the nearest neighbor VB state, exa
tly 1/4 of the triangles have no singlet bonds.22The situation is very di�erent in 1D. In the Majumdar-Gosh model, one 
an get a �nite energy state with two11



VBC. The ordered VB ba
kground is a medium whi
h 
on�nes the spinons in pairs. Sin
e anRVB state should instead be viewed as a liquid (no broken symmetry, no long range order),it is reasonable to expe
t the spinons to be able to propagate as independent parti
les. Aswe will see in the next se
tion, the proper way to address this question of 
on�nement andde
on�nement of spinons is to understand the emergen
e of gauge degrees of freedom in thesesystems.6 S
hwinger bosons, large-N limit, and Z2 topologi
alphase6.1 S
hwinger bosons representationThe spin wave approa
h is a large-S approa
h and is unable to 
apture highly quantum stateswhi
h are rotationally symmetri
, su
h as RVB wave fun
tions. From the dis
ussion of Se
. 5,it is natural to look for a des
ription in terms of singlet �elds leaving on bonds, and ableto des
ribe the presen
e or absen
e of a singlet between two sites. Su
h variables appearnaturally when using the S
hwinger boson representation of the spin operators [35, 36℄.At ea
h site, two types of bosons 
arrying a spin �up� and �down� are introdu
ed: a†
i↑ and

a†
i↓, and the spin operators are represented as bilinears in the boson 
reation and annihilationoperators

Sz
i =

1

2

“

a†
i↑ai↑ − a†

i↓ai↓
”

, S+
i = a†

i↑ai↓ , S−
i = a†

i↓ai↑ (25)With these relations, the 
ommutation relations [Sα
i , Sβ

i ] = iǫαβδSδ
i are automati
ally veri�ed.The total spin reads ~S2

i = ni

2

`

ni

2
+ 1

´, where ni = a†
i↑ai↑+a†

i↓ai↓ is the total number of bosonsat site i. To �x the length of the spins, the following 
onstraint must therefore be imposedon physi
al states:
a†

i↑ai↑ + a†
i↓ai↓ = 2S (26)With this representation,23 the Heisenberg intera
tion is of degree four in the boson op-erators and 
an be written

~Si · ~Sj = S2 − 1

2
(Aij)

†Aij (27)
with Aij = ai↑aj↓ − ai↓aj↑. (28)The bond operators A†

ij behave as a singlet 
reation operators: A†
ij , when applied onto theboson va
uum, 
reates a spin singlet | ↑i↓j〉− | ↓i↑j〉 and, from Eq. 27, A†

ijAij is proportionalto the number (0 or 1) of a singlet between sites i and j. In addition, Aij is invariant underrotations: rede�ning the bosons by an SU(2) matrix P : »

a↑
a↓

–

→ P

»

a↑
a↓

– leaves Aijun
hanged.246.2 Mean �eld approximationArovas and Auerba
h [35℄ suggested an approximation in whi
h the intera
tion is de
oupledusing mean-�eld expe
tation values
A†

ijAij −→ A†
ij〈Aij〉 + 〈A†

ij〉Aij − |〈A†
ij〉|2 (29)and to repla
e the 
onstraint (Eq. 26) by a 
ondition on the average number of boson per site

〈a†
i↑ai↑ + a†

i↓ai↓〉 = 2S. (30)remote spinons by introdu
ing a domain wall in the dimerization pattern in 0 and i.23Fermions 
an also be used, leading to other very interesting theories for (gapped of gapless) QSL [37, 38, 12℄.24 Aij 
an be written using the 2 × 2 antisymmetri
 tensor ǫ =

»

0 −1
1 0

–: Aij =
P

σ,σ′=↑,↓ ǫσσ′aiσajσ′ . Therotation invarian
e of Aij follows from the fa
t that any P ∈ SU(2) satis�es P tǫP = ǫ.12



By this repla
ement, the Hamiltonian be
omes quadrati
 in the boson operator
H −→ HMF[Q0

ij , λ
0
j ] = −1

2

X

ij

“

A†
ijQ

0
ij + Q̄0

ijAij

”

−
X

i

λ0
i

“

a†
i↑ai↑ + a†

i↓ai↓ − 2S
”

+ cst. (31)A 
hemi
al potential λ0
i has been introdu
ed at ea
h site to tune the boson densities so thatthey satisfy Eq. 30. The mean �eld Hamiltonian HMF (and thus its ground state |0〉) dependson the 
omplex parameters Q0

ij (one for ea
h pair of sites ij where Jij 6= 0). These parametershave to be adjusted to satisfy the self-
onsisten
y 
onditions on ea
h bond
Q0

ij =
1

2
Jij〈0|ai↑aj↓ − ai↓aj↑|0〉. (32)As in the spin wave approa
h, the Heisenberg model has been redu
ed to a quadrati
 bosonmodel (here with some self 
onsisten
y 
onditions). However, the 
ru
ial di�eren
e is that thepresent formalism does not impose any preferred spin dire
tion: giving a �nite expe
tationvalue A0

ij 6= 0 to the operator Aij does not break the SU(2) symmetry � whi
h is a ne
essary
ondition to des
ribe a QSL.Generally speaking, two family of solutions 
an be found at this mean �eld level. In the�rst 
lass, favored when S is large, the S
hwinger boson Bose-
ondense in some parti
ularmode. Be
ause they 
arry a spin index, su
h 
ondensate state (spontaneously) breaks the
SU(2) symmetry. These solutions des
ribe Néel states with long range spin-spin 
orrelations.In su
h 
ases, the S
hwinger boson mean-�eld theory is essentially equivalent to the spin waveapproa
h (Se
. 3).The se
ond 
lass 
orresponds to (mean �eld) QSL states. There, the ground state isrotationally invariant, and the Bogoliubov quasi parti
les obtained by diagonalizing HMF aregapped. Sin
e the 
orresponding 
reation operators, b↑,α and b↓,α, are linear 
ombinationsof the original bosons, these ex
itations also 
arry a spin 1

2
. The most important questionis whether the existen
e of these de
on�ned (free in the mean �eld approximation) spinonsis an artifa
t of the mean �eld approximation, or if they 
ould survive in some Heisenbergspin model. In the �rst a 
ase, the in
lusion of the �u
tuations that were negle
ted would
on�ne the spinons and would deeply 
hange the nature of the ground state. The mean-�eldpi
ture of a fully symmetri
 state with non intera
ting spinons ex
itation is then qualitativelyin
orre
t. Another possibility is that the spinons remains de
on�ned, even in presen
e of�u
tuations. In that 
ase, the mean-�eld approximation is a very useful starting point. Wewill dis
uss in Se
. 6.5 a s
enario where it is the 
ase. But before, we need to introdu
e thebasi
 formalism that is needed to des
ribe the �u
tuations about the mean �eld solution, andemergen
e of gauge degrees of freedom in the system. The 
entral question 
on
erning thelong distan
e and low energy properties of the system will be whether these gauge degrees offreedom 
on�ne or not the spinons.6.3 Large N , saddle pointTo dis
uss the role of the �u
tuations negle
ted in Eq. 29, it is ne
essary to formulate themean �eld approximation as a saddle point approximation in path integral formulation of themodel. It will then be possible to identify the stru
ture of the most important �u
tuationsabout the saddle point. To do so, one dupli
ates N times the two spe
ies of bosons (↑ and ↓).In addition to the site and up/down indi
es σ, the boson operators now 
arry an additional��avor� index m = 1, · · · ,N . The Hamiltonian and the 
onstraint are then generalized to

H = − 1

2N
X

ij

JijA
†
ijAij (33)

Aij =
N

X

m=1

aim↑ajm↓ − aim↓ajm↑ (34)and
N

X

m=1

a†
im↑aim↑ + a†

im↓aim↓ = 2NS. (35)13



For N = 1, this model is Heisenberg model with SU(2) symmetry. For N > 1, this modelhas an enlarged symmetry given by the group Sp(N ).25 S is a parameter of the model, andis no longer related to a representation of SU(2) if N > 1. The bond operator Aij is a sumover all the �avors. For this reason, in the limit where N is very large, the �u
tuations of Aijbe
ome negligible 
ompare to its expe
tation value and the approximation made in Eq. 29be
omes exa
t.A formal way to establish this result is to adopt a formulation of model where the partitionfun
tion Z = Tr
ˆ

e−βH
˜ at temperature T = β−1 is expressed as a 
oherent state path integralover 
omplex variables zimσ(τ ) (in 
orresponden
e with the boson operators aimσ) whi
h areperiodi
 fun
tions of the imaginary time τ ∈ [0, β[. In this formalism the partition fun
tionreads 26
Z =

Z

D[zimσ(τ ), λi(τ )] exp

„

−
Z β

0

L0 dτ

« (36)
L0 =

X

i m σ

z̄imσ∂τzimσ − 1

2N
X

ij

JijA
†
ijAij

+i
X

i m

λi (z̄im↑zim↑ + z̄im↓zim↓ − 2S) (37)
Aij =

N
X

m=1

(zim↑zjm↓ − zim↓zjm↑) , (38)where a Lagrange multiplier λ has been introdu
ed at ea
h latti
e site and ea
h time stepto enfor
e the 
onstraint (Eq. 35) exa
tly (to simplify the notations, the τ dependen
e of all�elds is impli
it).Now, a Hubbard-Stratonovi
h transformation is performed :
Z =

Z

D[zimσ(τ ), λi(τ ),Qij(τ )] exp

„

−
Z β

0

L1 dτ

« (39)
L1 =

X

i m σ

z̄imσ∂τzimσ +
X

ij

„

2N
Jij

|Qij |2 − Q̄ijAij − QijĀij

«

+i
X

i m

λi (z̄im↑zim↑ + z̄im↓zim↓ − 2S) (40)This new formulation involves an additional 
omplex �eld Qij on ea
h bond. The equivalen
eof L1 with the initial Lagrangian L0 
an simply be 
he
ked by performing the Gaussianintegrations over Qij(τ ) for ea
h bond and ea
h time step: R

D[Qij(τ )] exp
“

−
R β

0
L1 dτ

”

=

exp
“

−
R β

0
L0 dτ

” (up to a multipli
ative 
onstant). At this point, the N �avors of parti
lesare no longer 
oupled to ea
h other, but are 
oupled to a 
ommon bond �eld Qij . So, fora �xed spa
e-time 
on�guration of Q, we have N independent 
opies of the same boson25 The simple
ti
 group of 2N × 2N matri
es Sp(N ) is the set of matri
es P whi
h satis�es P tJP = J , where
J =

2

6

6

6

6

6

4

0 1
−1 0 . . .

0 1
−1 0

3

7

7

7

7

7

5

generalizes the antisymmetri
 ǫ tensor.26 For an introdu
tion to the path integral formalism in this 
ontext of quantum magnetism, see for in-stan
e Ref. [36℄. We sket
h the main steps of the derivation in the 
ase of a single bosoni
 mode [a, a†] = 1.For any 
omplex number z, a 
oherent state |z〉 = eza† |0〉 is de�ned. These states satisfy: a|z〉 = z|z〉,
〈z|z′〉 = ez̄z′ and the resolution of the identity 1

π

R

d2z |z〉〈z|e−|z|2 = 1. On writes the partition fun
tionas a produ
t over Nτ imaginary time steps Z = Tr
ˆ

e−dτHe−dτH · · ·
˜

= limNτ→∞ Tr [(1 − dτH)(1 − dτH) · · ·]with dτ = β/Nτ . Then, the identity is inserted at ea
h step: Z = limNτ →∞
R

“

QNτ
τ=1 d2zτ

”

e−|z1|2〈z1|1 −
dτH|zNτ

〉e−|zNτ
|2 〈zNτ

|1 − dτH|zNτ−1〉 · · · e−|z2|2〈z2|1 − dτH|z1〉. Next, we write e−|zi|2〈zi|1 − dτH|zi−1〉 ≃
exp [−z̄i(zi − zi−1) − dτH(z̄i, zi−1)], where the 
omplex number H(z̄, z′) = 〈z′|H|z〉 is obtained by writing theHamiltonian in a normal-ordered form an repla
ing a† by z̄ and a by z′. Taking the 
ontinuous time limit dτ → 0is formally written as zi − zi−1 → ∂τ z(τ)dτ and �nally leads to Z =

R

D[z] exp(−
R β
0 Ldτ) with the Lagrangian

L = z̄(τ)∂τ z(τ) + H(z̄(τ), z(τ)). 14



system. In addition, the Lagrangian L1 is now quadrati
 in the z variable. We note G−1
Q,λthe 
orresponding quadrati
 form, a big matrix whi
h has spa
e (i), time (τ ), spin (σ) and
omplex 
onjuga
y (z versus z̄) indi
es (but no �avor index), and depends on the auxiliary�eld Q and λ. L1 is then

L1 =
X

ij

2N
Jij

|Qij |2 − 2iNS
X

i

λi

+
X

m

[z̄iσ(τ ); ziσ(τ )] G−1
Q,λ

»

zjσ′(τ ′)
z̄jσ′(τ ′)

– (41)Performing the Gaussian integral over the z �elds is now simple, as it gives (det[G])N , alsoequivalent to eNTr[log(G)]. The partition fun
tion is now expressed as a path integral with the�elds Q and λ only, but with a 
ompli
ated non-Gaussian weight:
Z =

Z

D[ziσ(τ ), λi(τ ),Qij(τ )] exp

„

−N
Z β

0

L2 dτ

« (42)
L2 = +

X

ij

2

Jij
|Qij |2 − 2iS

X

i

λi + Tr[log(GQ,λ)] (43)Here, the �avor indi
es m have disappeared and N only appears a global multipli
ative fa
torin the a
tion. With this formulation of the Sp(N ) �spin� model, it is 
lear that, in the limit
N → ∞ the partition fun
tion will be dominated by the 
on�gurations (Q0, λ0) whi
h aresaddle points of the a
tion S [Q,λ] =

R β

0
L2 dτ . In other words the �u
tuations of Qij and λiare frozen when N → ∞. Su
h saddle points are obtained by requiring

∂S
∂λi(τ )

˛

˛

˛

˛

Q0,λ0

= 0 ,
∂S

∂Qij(τ )

˛

˛

˛

˛

Q0,λ0

= 0. (44)(45)and in most 
ases they are found to be time independent Q0
ij(τ ), λ0

i (τ ) → Q0
ij , λ

0
i . Theequations above 
an then be shown to be equivalent to the self 
onsisten
y 
onditions ofEqs. 30 and 32, with Q0

ij =
Jij

2N
P

m〈0|aim↑ajm↓ − aim↓ajm↑|0〉.6.4 Flu
tuations about a saddle point and gauge invarian
eWe are now ready to dis
uss the �u
tuations that are present when N is �nite, where the�eld Qij(τ ) is able to �u
tuate around its mean �eld value Q0
ij . Treating all the possible�u
tuations is 
ertainly very di�
ult, as it would amount to solve the original spin problem.A possible approa
h is to 
ompute perturbatively the �rst 1/N 
orre
tions to the mean�eld results [35℄. However, this 
an miss some important e�e
t (instabilities) whi
h are notperturbative in 1/N , and will generally not shed light on the issue of spinon 
on�nementthat we are interested in. Instead, as in [39, 40℄, we will examine the qualitative stru
ture ofthe �u
tuation modes whi
h are important for the long distan
e properties of the system. Inparti
ular, we would like to know if some �u
tuations 
ould 
on�ne the spinons (in whi
h 
asethe mean �eld pi
ture is in
orre
t), or if the QSL state is stable at �nite N . As we will see,there are some �u
tuations modes whi
h are des
ribed by a gauge �eld [39, 40℄ and mediatesome (possibly long ranged) intera
tion between the spinon. The dynami
s of this gauge �eldis therefore 
ru
ial to the physi
s of the spin system. In some 
ases this gauge �eld will bein a 
on�ning phase, and the N = ∞ limit (where the �u
tuations are frozen out) does notrepresent the physi
s of the �nite N models [39℄. In some other situations, the gauge �eldhas a de
on�ned phase and a QSL state with elementary spinon ex
itation is possible [40℄.First, it should be noti
ed that the des
ription of the spin operators with S
hwinger bosonsis redundant in the sense that an arbitrary lo
al 
hange of phase in the boson operators doesnot 
hange the physi
al spin operators. In the path integral formulation, this be
omes a fullspa
e-time gauge invarian
e. The Lagrangian L1 (Eq. 40) is invariant under

zimσ(τ ) −→ eiΛi(τ)zimσ(τ ) (46)
Qij(τ ) −→ ei(Λi(τ)+Λj(τ))Qij(τ ) (47)
λi(τ ) −→ λi(τ ) − ∂τΛi(τ ) (48)15



where Λi(τ ) is some arbitrary angle at ea
h site and time step.However, this lo
al U(1) gauge invarian
e is broken to a smaller invarian
e group in thevi
inity of a saddle point (Q0, λ0). This 
an be illustrated the simpler 
ontext of a 
lassi
alferromagneti
 Heisenberg model. A ground state is magnetized in one parti
ular dire
tionand thus breaks the O(3) symmetry of the Hamiltonian. The theory for the (transverse) spindeviations around this ferromagneti
 state has an O(2) symmetry, an not O(3). The situationis similar for the �u
tuations of the bond �eld Qij . Although the model has a lo
al U(1)gauge invarian
e, the a
tion des
ribing the �u
tuations around Q0
ij have a lower invarian
egroup. In the ferromagnet example, we look at the rotations under whi
h the ground stateis un
hanged. Similarly, we look for the gauge transformations whi
h leave Q0

ij un
hanged.These transformations form the invariant gauge group (IGG) of the saddle point, a 
on
eptintrodu
ed by X. G. Wen [41℄. A gauge transformation i 7→ Λi belongs to the IGG of Q0
ij ifit is stati
 and satis�es

Q0
ij = Q0

ije
i(Λi+Λj) (49)If the latti
e made of the bonds where Q0

ij is non zero is bipartite, it is easy to show that
Λi = θ on sublatti
e A and Λi = −θ on sublatti
e B satis�es Eq. 49 for any (global) angle θ.In su
h a 
ase, the IGG is isomorphi
 to U(1). On the other hand, if the latti
e of the bondswhere Q0

ij 6= 0 is not bipartite, the IGG is isomorphi
 to Z2, sin
e Λi = π and Λi = 0 are theonly two solutions to Eq. 49 when Q0
ij 6= 0.The general result [41℄ is that, among the �u
tuations around the saddle point Q0, somemodes are des
ribed by a gauge �eld. with a gauge group given by the IGG. We will illustratethis result in the simple 
ase IGG= Z2.276.5 Z2 gauge �eldIf the IGG is Z2, the important �u
tuations turn out to be �u
tuations of the sign of Qij .We therefore parametrize these �u
tuations in the following way

Qij(τ ) = Q0
ij eiAij(τ) , Aij(τ ) ∈ {0, π}. (50)where the �eld Aij will play the role of a �dis
rete� (Z2) ve
tor potential living on the linksof the latti
e (pairs of sites where Q0

ij 6= 0).Doing the integration over all the other �u
tuation modes (amplitude �u
tuations thebond �eld Qij , �u
tuations of λi, et
.) in order to obtain an e�e
tive a
tion for Aij andthe bosons ziσ only28 is formally possible, but it is of 
ourse a very di�
ult task in pra
ti
e.One 
an instead determine the symmetry 
onstraints, and, in a Landau-Ginzburg type ofapproa
h, 
onstru
t the simplest a
tion 
ompatible with these symmetries.For this, we 
onsider the (stati
) lo
al gauge transformation i 7→ Λi with the restri
tion
Λi ∈ {0, π}. Be
ause Aij is de�ned modulo 2π, −Λj is equivalent to +Λj and the transfor-mation rules take the usual form (ex
ept for the dis
rete nature of Aij):

ziσ −→ eiΛiziσ (51)
Aij −→ Aij + Λi − Λj . (52)These lo
al transformations form a very large symmetry group (2 to the power of the numberof latti
e sites) and severely 
onstrain the e�e
tive Hamiltonian for these degrees of freedom.Be
ause of this invarian
e, a term like Aij , A2

ij or even cos(Aij) 
annot appear as an en-ergy term.29 Instead, only the produ
ts of eiAij on 
losed loops are gauge invariant. As a
ir
ulation of the a ve
tor potential, these loop terms are the analog of the magneti
 �ux inele
tromagnetism. Su
h produ
ts 
an thus appear in an e�e
tive des
ription of the �u
tua-tions about the mean �eld solution. Terms like Eij = ∂τAij + λi − λj , whi
h are equivalentto the ele
tri
 �eld, are also gauge invariant. As for the 
ouplings to the bosons, the 
ouplingto A allowed by the gauge invarian
e (an spin-rotations) are of the type z̄iσ eiAij zjσ.27The 
ases where IGG= U(1) are generi
ally unstable saddle points: the gauge �u
tuations lead to spinon
on�nement, and latti
e symmetry breaking (VBC) when S = 1
2
[39℄. This will not be dis
ussed here.28From now on, we go ba
k to N = 1 a drop the �avor index m for simpli
ity.29In the same way, a a mass term like the square of the ve
tor potential A2

µν is forbidden by gauge invarian
e in
onventional ele
tromagnetism. 16



6.6 A simple e�e
tive modelWe 
an 
ombine the gauge invariant terms above into a simple Hamiltonian whi
h 
an phe-nomenologi
ally, when IGG=Z2, des
ribe the gauge �u
tuations about a saddle point andtheir e�e
t on the spinons:
H = −K

X

�

σz
ijσ

z
jkσz

klσ
z
li − Γ

X

〈ij〉
σx

ij

−t
X

〈ij〉,σ=↑,↓

“

b†iσ σz
ij bjσ + H.c

”

+ ∆
X

iσ

b†iσbiσ

+V
X

i

"

„

b†i↑bi↑ + b†i↓bi↓ − 1

2

«2

− 1

4

# (53)The operator σz
ij has eigenvalues ±1, like a pseudo spin- 1

2
, and 
orresponds to eiAij in thepath integral formulation (Eq. 50). σx

ij 
orresponds to the ele
tri
 �eld operator. In the pathintegral, Aij and Eij are 
onjugated. So σx
ij and σz

ij should not 
ommute on the same bond.The natural 
hoi
e in our dis
rete 
ase is σx
ijσ

z
ij = −σz

ijσ
x
ij . So, σx

ij and σz
ij are the x and

z 
omponents of the pseudo spin- 1
2
. The bosons represent the Bogoliubov quasi parti
les(spinon) of the mean �eld Hamiltonian. The �rst term (K) is a sum over all the elementaryplaquettes (square here for simpli
ity) and 
orresponds to the magneti
 energy of the gauge�eld. The se
ond term (Γ) is the ele
tri
 energy, whi
h generates �u
tuations in the magneti
�ux. The third one (t) des
ribes the spinon hopping and their intera
tion with the gauge�eld. The last terms represents the energy 
ost ∆ > 0 to 
reate a spinon (related to the spingap of the spin model) and some (large) penalty V when more than one spinon are on thesame site.This model is of 
ourse not dire
tly related to the original spin model but 
ontains the sametwo important ingredients that have been identi�ed in the large N limit (spinon 
oupled to

Z2 gauge �eld �u
tuations) and 
an provide as a simpli�ed and phenomenologi
al des
riptionto a gapped QSL.Be
ause of the gauge symmetry, the physi
al Hilbert spa
e of the model should be 
on-strained to avoid spurious degrees of freedom: two states whi
h di�er by a gauge transfor-mation 
orrespond to a single physi
al state and should not appear twi
e in the spe
trum.In the Hamiltonian formulation of gauge theories, the solution is to 
onstru
t the operators
Ui0 whi
h generate the lo
al gauge transformations, and impose that all the physi
al statesshould be invariant under these transformations: Ui0 |phys.〉 = |phys.〉 ∀i0. In the present
ase, an elementary gauge transformation at site i0 
hanges the value σz

i0j for all neighbors
j of i0 (noted j ∈ +). In addition, it 
hanges the sign of the boson operators in i0. Thistransformation is implemented by the following unitary operator

Ui0 = exp
h

iπ(b†i0↑bi0↑ + b†i0↓bi0↓)
i

Y

j∈+

σx
i0j (54)The 
onstraint Ui0 = 1 is the latti
e version of the Gauss law, div ~E = ρ, in ele
tromagnetism,and the spinons appear to play the role of the �ele
tri
� 
harges.Readers familiar with latti
e gauge theories will have re
ognized the Hamiltonian formula-tion of a Z2 gauge theory [42℄. However, to show that the ground state of this model realizesa topologi
al phase (when Γ is small enough), we will show that it is very 
lose to the tori

ode model introdu
ed by Kitaev [3℄.6.7 Tori
 
ode limitOne goal of these notes was to show that (gapped) QSL in Mott insulators are topologi
allyordered states with emerging gauge degrees of freedom. To 
on
lude, we will now take advan-tage of Kitaev's le
tures of topologi
al states of matter (in this s
hool), and show the 
lose
onne
tion between the large N des
ription of gapped QSL and Kitaev's tori
 
ode [3℄.We 
onsider the limit of Eq. 53 when t = 0, Γ = 0 and V = ∞. In this limit, the bosons
annot hop any more, and 
an only be zero or one per site: ni = b†i0↑bi0↑ + b†i0↓bi0↓ ∈ {0, 1}.Using Ui = 1 (Eq. 54) we �nd: eiπni =

Q

j∈+ σx
ij , so that the boson o

upation numbers are17



expressed in terms of the (latti
e divergen
e of the) ele
tri
 �eld operators: 2ni = 1−Q

j∈+ σx
ij .Taking The Hamiltonian 
an then be written as

H = −K
X

�

σz
ijσ

z
jkσz

klσ
z
li −

1

2
∆

X

i

Y

j∈+

σx
ij (55)whi
h is exa
tly the (solvable) tori
 
ode Hamiltonian [3℄.We 
an now import some results from the tori
 
ode analysis. Although simple derive inthe framework of Eq. 55, they are highly non trivial from the point of view of the originalspin model. First, the ground state breaks no symmetry and the spinons (here at the sites iwith Q

j∈+ σx
ij = −1) are free parti
les, they are not 
on�ned by the gauge �eld �u
tuations.Se
ondly, the ground state is degenerate on a 
ylinder or on a torus (periodi
 boundary
onditions), as required by the LSMH theorem. The ground state are topologi
ally orderedin the sense that no lo
al observable 
an distinguish the di�erent ground states. Beyondthe spinons, the model also have Z2-vortex ex
itations, whi
h 
orrespond to plaquettes with

σz
ijσ

z
jkσz

klσ
z
li = −1. These gapped ex
itations are singlet states in the original spin modelsin
e the bond �eld Qij and its sign �u
tuations σz

ij are rotationally invariant.30 Theseex
itation have a non trivial mutual statisti
s with respe
t to the spinon, and a bound stateof a spinon and a vison behaves as a fermion. Finally, the topologi
al properties of the model(fra
tional ex
itations, topologi
al degenera
y) are robust to perturbations, and should persistin presen
e of a small Γ and small t (Eq. 53).Referen
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