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1

Introduction

During these lectures, I will focus exclusively on two-dimensional realizations of frac-
tional topological insulators. However, before doing so, I need to revisit the definition of
non-interacting topological phases of matter for fermions and, for this matter, I would like
to attempt to place some of the recurrent concepts that have been used during this school on a
time line that starts in 1931.

Topology in physics enters the scene in 1931 when Dirac showed that the existence of
magnetic monopoles in quantum mechanics implies the quantization of the electric and mag-
netic charge. [24]

In the same decade, Tamm and Shockley surmised from the band theory of Bloch that
surface states can appear at the boundaries of band insulators (see Fig. 1.1). [115, 110]

The dramatic importance of static and local disorder for electronic quantum transport had
been overlooked until 1957 when Anderson showed that sufficiently strong disorder “gener-
ically” localizes a bulk electron. [5] That there can be exceptions to this rule follows from
reinterpreting the demonstration by Dyson in 1953 that disordered phonons in a linear chain
can acquire a diverging density of states at zero energy with the help of bosonization tools in
one-dimensional space (see Fig. 1.2). [25]

Following the proposal by Wigner to model nuclear interactions with the help of random
matrix theory, Dyson introduced the threefold way in 1963, [26] i.e., the study of the joint
probability distribution

P (θ1, · · · , θN ) ∝
∏

1≤j<k≤N

∣∣eiθj − eiθk
∣∣β , β = 1, 2, 4, (1.1)

for the eigenvalues of unitary matrices of rank N generated by random Hamiltonians without
any symmetry (β = 2), by random Hamiltonians with time-reversal symmetry correspond-
ing to spin-0 particles (β = 1), and by random Hamiltonians with time-reversal symmetry
corresponding to spin-1/2 particles (β = 4).

Topology acquired a mainstream status in physics as of 1973 with the disovery of Berezin-
skii and of Kosterlitz and Thousless that topological defects in magnetic classical textures can
drive a phase transition. [9, 66, 65] In turn, there is an intimate connection between topo-
logical defects of classical background fields in the presence of which electrons propagate
and fermionic zero modes, as was demonstrated by Jackiw and Rebbi in 1976 (see Fig.
1.3). [51, 114]

The 70’s witnessed the birth of lattice gauge theory as a mean to regularize quantum chro-
modynamics (QCD4). Regularizing the standard model on the lattice proved to be more diffi-
cult because of the Nielsen-Ninomiya no-go theorem that prohibits defining a theory of chiral
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Fig. 1.1 Single-particle spectrum of a Bogoliubov-de-Gennes superconductor in a cylindrical geometry
which is the direct sum of a px + ipy and of a px − ipy superconductor (after P-Y. Chang, C. Mudry,
and S. Ryu, arXiv:1403.6176). The two-fold degenerate dispersion of two chiral edge states are seen to
cross the mean-field superconducting gap. There is a single pair of Kramers degenerate edge state that
disperses along one edge of the cylinder.

(a) (b)

Fig. 1.2 (a) The beta function of the dimensionless conductance g is plotted (qualitatively) as a function
of the linear system size L in the orthogonal symmetry class (β = 1) when space is of dimensionality
d = 1, d = 2, and d = 3, respectively. (b) The dependence of the mean Landauer conductance 〈g〉
for a quasi-one-dimensional wire as a function of the length of the wire L in the symmetry class BD1.
The number N of channel is varied as well as the chemical potential ε of the leads. [Taken from P. W.
Brouwer, A. Furusaki, C. Mudry, S. Ryu, BUTSURI 60, 935 (2005)]

fermions on a lattice in odd-dimensional space without violating locality or time-reversal sym-
metry. [90,89,91] This is known as the fermion-doubling problem when regularizing the Dirac
equation in d-dimensional space on a d-dimensional lattice.

The 80’s opened with a big bang. The integer quantum Hall effect (IQHE) was discovered
in 1980 by von Klitzing, Dorda, and Pepper (see Fig. 1.4), [63] while the fractional quantum
Hall effect (FQHE) was discovered in 1982 by Tsui, Stormer, and Gossard. [118] At inte-
ger fillings of the Landau levels, the non-interacting ground state is unique and the screened
Coulomb interaction Vint can be treated perturbatively, as long as transitions between Landau
levels or outside the confining potential Vconf along the magnetic field are suppressed by the
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Fig. 1.3 (a) Nearest-neighbor hopping of a spinless fermion along a ring with a real-valued hopping
amplitude that is larger on the thick bonds than on the thin bonds. There are two defective sites, each of
which are shared by two thick bonds. (b) The single-particle spectrum is gapped at half-filling. There are
two bound states within this gap, each exponentially localized around one of the defective sites, whose
energy is split from the band center by an energy that decreases exponentially fast with the separation of
the two defects.

single-particle gaps ~ωc and Vconf , respectively,

Vint � ~ωc � Vconf , ωc = eB/(mc). (1.2)

When Galilean invariance is not broken, the conductivity tensor is then given by the classical
Drude formula

lim
τ→∞

j =

(
0 + (BRH)

−1

− (BRH)
−1

0

)
E, R−1

H ..= −n e c, (1.3)

that relates the (expectation value of the) electronic current density j ∈ R2 to an applied
electric field E ∈ R2 within the plane perpendicular to the applied static and uniform mag-
netic field B in the ballistic regime (τ → ∞ is the scattering time). The electronic density,
the electronic charge, and the speed of light are denoted n, e, and c, respectively. Moderate
disorder is an essential ingredient to observe the IQHE, for it allows the Hall conductivity
to develop plateaus at sufficiently low temperatures that are readily visible experimentally
(see Fig. 1.4). These plateaus are a consequence of the fact that most single-particle states
in a Landau level are localized by disorder, according to Anderson’s insight that any quan-
tum interference induced by a static and local disorder almost always lead to localization in
one- and two-dimensional space. The caveat “almost” is crucial here, for the very observation
of transitions between Landau plateaus implies that not all single-particle Landau levels are
localized.

The explanation for the integer quantum Hall effect followed quickly its discovery owing
to a very general argument of Laughlin based on gauge invariance that implies that the Hall
conductivity must take a fractional value if the longitudinal conductivity vanishes (mobility
gap). [67] This argument was complemented by an argument of Halperin stressing the crucial
role played by edge states when electrons in the quantum Hall effect are confined to a strip
geometry (see Fig. 1.5), [47] while works from Thouless, Kohmoto, Nightingale, den Nijs and
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(a) (b) (c)

Fig. 1.4 (a) The Hall conductivity is a linear function of the electron density if Galilean invari-
ance holds. (b) Galilean invariance is broken in the presence of disorder so that plateaus become
evident at integral filling fractions of the Landau levels. (c) Graphene deposited on SiO2/Si, T=1.6
K and B=9 T (inset T=30 mK) support the integer quantum Hall effect at the filling fractions
ν = ±2,±6,±10, · · · = ±2(2n + 1), n ∈ N. [Taken from Zhang et al., Nature 438, 201 (2005)]

Niu demonstrated that the Hall response is, within linear response theory, proportional to the
topological invariant

C ..= − i

2π

2π∫
0

dφ

2π∫
0

dϕ

[〈
∂Ψ

∂φ

∣∣∣∣ ∂Ψ

∂ϕ

〉
−
〈
∂Ψ

∂ϕ

∣∣∣∣ ∂Ψ

∂φ

〉]
(1.4)

that characterizes the many-body ground state |Ψ〉 obeying twisted boundary conditions in
the quantum Hall effect. [117, 111, 92, 93] Together, these arguments constitute the first ex-
ample of the bulk-edge correspondence with observable consequences, namely the distinctive
signatures of both the integer and the fractional quantum Hall effect.

The transitions between plateaus in the quantum Hall effect are the manifestations at fi-
nite temperature and for a system of finite size of a continuous quantum phase transition,
i.e., of a singular dependence of the conductivity tensor on the magnetic field (filling frac-
tion) that is rounded by a non-vanishing temperature or by the finite linear size of a sample.
In the non-interacting limit, as was the case for the Dyson singularity at the band center, an
isolated bulk single-particle state must become critical in the presence of not-too strong dis-
order. The one-parameter scaling theory of Anderson localization that had been initiated by
Wegner and was encoded by a class on non-linear-sigma models (NLSMs) has to be incom-
plete. [123,3,50] Khmelnitskii, on the one hand, and Levine, Libby, and Pruisken, on the other
hand, introduced in 1983 a two-parameter scaling theory for the IQHE on phenomenological
grounds. [57, 71, 96] They also argued that the NLSM for the IQHE, when augmented by a
topological θ term, would reproduce the two-parameter flow diagram (see Fig. 1.6). This re-
markable development took place simultaneously with the works on Haldane on encoding the
difference between half-integer and integer spin chains (Haldane’s conjecture) by the presence
of a θ = π topological term in the O(3) NLSM [42, 44] and by the work of Witten [130] on
principal chiral models augmented by a Wess-Zumino-Novikow-Witten (WZNW) term.

Deciphering the critical theory for the plateau transition is perhaps the most tantalizing
challenge in the theory of Anderson localization. Among the many interesting avenues that
have been proposed to reach this goal (that remains elusive so far), Ludwig, Fisher, Shankar,
and Grinstein studied random Dirac fermions in two-dimensional space in 1994 (see Fig.
1.7), [75] motivated as they were by the fact that a massive Dirac fermion in two-dimensional
space carries the fractional value



Introduction 5

B

x

y

z

(a) (b) (c)

Integer Quantum Hall Effect

Fig. 1.5 Chiral edges are immune to backscattering within each traffic lane.
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according to Deser, Jackiw, and Templeton [23] and that it is possible to regularize two such
massive Dirac fermions on a two-band lattice model realizing a Chern insulator according to
Haldane. [45]

The early 90’s were also the golden age of mesoscopic physics, the application of random
matrix theory to condensed matter physics. The threefold way had been applied successfully to
quantum dots and quantum transport in quasi-one-dimensional geometries. Zirnbauer in 1996
and Altland and Zirnbauer in 1997 extended the threefold way of Dyson to the tenfold way by
including three symmetry classes of relevance to quantum chromodynamics called the chiral
classes, and four symmetry classes of relevance to superconducting quantum dots (see Table
1.1). [133, 4, 49] Quantum transport in quasi-one-dimensional wires belonging to the chiral
and superconducting classes was studied by Brouwer, Mudry, Simons, and Altland and by
Brouwer, Furusaki, Gruzberg, Mudry, respectively (see Fig. 1.8). [15,14,12,13] Unlike in the
threefold way, the three chiral symmetry classes and two of the four superconducting classes
(the symmetry classes D and DIII) were shown to realize quantum critical point separating
localized phases in quasi-one-dimensional arrays of wires. The diverging nature of the density
of states at the band center (the disorder is of vanishing mean) for five of the ten symmetry
classes in Table 1.2 is a signature of topologically protected zero modes bound to point defects.
These point defects are vanishing values of an order parameter (domain walls) responsible of
a spectral if translation symmetry was restored.

Lattice realizations of Z2 topological band insulators in two-dimensional space were pro-
posed by Kane and Mele in Refs. [54,55] and in three-dimensional space by Refs. [81,99,35].
This theoretical discovery initiated in Refs. [102, 101] the search of Dirac Hamiltonians be-
longing to the two-dimensional symmetry classes AII and CII from Table 1.1 for which the
corresponding NLSM encoding the effects of static and local disorder were augmented by a
topological term so as to evade Anderson localization on the boundary of a d = 3-dimensional
topological insulators. Following this route for all symmetry classes and for all dimensions,
Ryu, Schnyder, Furusaki, and Ludwig arrived at the periodic Table 1.3. [106, 107, 103] The
same table was derived independently by Kitaev using a mathematical construction known as
K theory that he applied to gapped Hamiltonians in the bulk (upon the imposition of periodic
boundary conditions, say) in the clean limit. [58] This table specifies in any given dimension
d of space, for which symmetry classes it is possible to realize a many-body ground state
for non-interacting fermions subject to a static and local disorder such that all bulk states
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Fig. 1.6 (a) A topological θ = π term modifies the RG flow to strong coupling in the two-dimensional
O(3) non-linear-sigma model. There exists a stable critical point at intermediary coupling that realizes
the conformal field theory SU(2)1. (b) Pruisken argues that the phenomenological two-parameter flow
diagram of Khmelnitskii is a consequence of augmenting the NLSM in the unitary symmetry class by a
topological term.

are localized but there exist a certain (topological) number of boundary states, that remain
delocalized.

The goals of these lectures are the following.
• First, I would like to rederive the tenfold way for non-interacting fermions in the presence

of local interactions and static local disorder.
• Second, I would like to decide if interactions between fermions can produce topological

phases of matter with protected boundary states that are not captured by the tenfold way.
This program will be applied in two-dimensional space.

These lectures are organized as follows. Section 2 motivates the tenfold way by deriving
it explicitly in quasi-one-dimensional space. Section 3 is a review of Abelian chiral bosoniza-
tion, the technical tool that allows one to go beyond the tenfold way so as to incorporate the
effects of many-body interactions. Abelian chiral bosonization is applied in Sec. 4 to demon-
strate the stability of the gapless helical edge states in the symmetry class AII in the presence
of disorder and many-body interactions. Abelian chiral bosonization is applied in Sec. 5 to
construct microscopically long-ranged entangled phases of two-dimensional quantum matter.
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Fig. 1.7 (a) A single (non-degenerate) cone of Dirac fermions in two-dimensional space realizes a
critical point between two massive phases of Dirac fermions, each of which carries the Hall conductance
σDirac

H = ±(1/2) in units of e2/h. (b) A generic static and local random perturbation of a single Dirac
cone is encoded by three channels. There is a random vector potential that realizes the symmetry class
AIII if it is the only one present. There is a random scalar potential that realizes the symmetry class
AII if it is the only one present. There is a random mass that realizes the symmetry class D if it is
the only one present. It is conjectured in Ref. [75] that in the presence of all three channels, the RG
flow to strong coupling (the variance of the disorder in each channel) is to the plateau transition in the
universality class of the IQHE. (c) Unit cell of the honeycomb lattice with the pattern of nearest- and
next-nearest-neighbor hopping amplitude that realizes a Chen insulators with two bands, shown in panel
(d), each of which carries the Chern number ±1.

Fig. 1.8 (Taken from Ref. [13]) The “radial coordinate” of the transfer matrixM from Table 1.2 makes
a Brownian motion on an associated non-compact symmetric space.
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Table 1.1 Listed are the ten Altland-Zirnbauer (AZ) symmetry classes of single-particle Hamiltonians
H, classified according to their behavior under time-reversal symmetry (T ), charge-conjugation (or:
particle-hole) symmetry (C), as well as “sublattice” (or: “chiral”) symmetry (S). The labels T, C, and
S, represent the presence/absence of time-reversal, particle-hole, and chiral symmetries, respectively, as
well as the types of these symmetries. These operations square to either ± times the unit operator when
they are symmetries. The number 0 indicates that these operations are not symmetries. The column
entitled “Hamiltonian” lists, for each of the ten AZ symmetry classes, the symmetric space of which the
quantum mechanical time-evolution operator exp(itH) is an element. The column “Cartan label” is the
name given to the corresponding symmetric space listed in the column “Hamiltonian” in Élie Cartan’s
classification scheme (dating back to the year 1926). The last column entitled “G/H (fermionic NLSM)”
lists the (compact sectors of the) target space of the NLSM describing Anderson localization physics at
long wavelength in this given symmetry class.

Cartan label T C S Hamiltonian G/H (fermionic NLSM)

A (unitary) 0 0 0 U(N) U(2n)/U(n)× U(n)
AI (orthogonal) +1 0 0 U(N)/O(N) Sp(2n)/Sp(n)× Sp(n)
AII (symplectic) −1 0 0 U(2N)/Sp(2N) O(2n)/O(n)×O(n)

AIII (ch. unit.) 0 0 +1 U(N +M)/U(N)× U(M) U(n)
BDI (ch. orth.) +1 +1 +1 O(N +M)/O(N)×O(M) U(2n)/Sp(2n)

CII (ch. sympl.) −1 −1 +1 Sp(N +M)/Sp(N)× Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N) O(2n)/U(n)
C (BdG) 0 −1 0 Sp(2N) Sp(2n)/U(n)

DIII (BdG) −1 +1 −1 SO(2N)/U(N) O(2n)
CI (BdG) +1 −1 −1 Sp(2N)/U(N) Sp(2n)
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Table 1.2 Altland-Zirnbauer (AZ) symmetry classes for disordered quantum wires. Symmetry classes
are defined by the presence or absence of time-reversal symmetry (TRS) and spin-rotation symmetry
(SRS), and by the single-particle spectral symmetries of sublattice symmetry (SLS) (random hopping
model at the band center) also known as chiral symmetries, and particle-hole symmetry (PHS) (ze-
ro-energy quasiparticles in superconductors). For historical reasons, the first three rows of the table are
referred to as the orthogonal (O), unitary (U), and symplectic (S) symmetry classes when the disorder
is generic. The prefix “ch” that stands for chiral is added when the disorder respects a SLS as in the
next three rows. Finally, the last four rows correspond to dirty superconductors and are named after the
symmetric spaces associated to their Hamiltonians. The table lists the multiplicities of the ordinary and
long rootsmo± andml of the symmetric spaces associated with the transfer matrix. Except for the three
chiral classes, one has mo+ = mo− = mo. For the chiral classes, one has mo+ = 0, mo− = mo.
The table also lists the degeneracy D of the transfer matrix eigenvalues, as well as the symbols for the
symmetric spaces associated to the transfer matrixM and the Hamiltonian H. Let g denote the dimen-
sionless Landauer conductance and let ρ(ε) denote the (self-averaging) density of states (DOS) per unit
energy and per unit length. The last three columns list theoretical results for the weak-localization cor-
rection δg for ` � L � N` the disorder average ln g of ln g for L � N`, and the DOS near ε = 0.
The results for ln g and ρ(ε) in the chiral classes refer to the case of N even. For odd N , ln g and ρ(ε)

are the same as in class D.

Symmetry class mo ml D M H δg −ln g ρ(ε) for 0 < ετc � 1
AI 1 1 2 CI AI −2/3 2L/(γ`) ρ0
A 2 1 2(1) AIII A 0 2L/(γ`) ρ0

AII 4 1 2 DIII AII +1/3 2L/(γ`) ρ0
BDI 1 0 2 AI BDI 0 2moL/(γ`) ρ0| ln |ετc||
AIII 2 0 2(1) A AIII 0 2moL/(γ`) πρ0|ετc ln |ετc||
CII 4 0 2 AII CII 0 2moL/(γ`) (πρ0/3)|(ετc)3 ln |ετc||
CI 2 2 4 C CI −4/3 2mlL/(γ`) (πρ0/2)|ετc|
C 4 3 4 CII C −2/3 2mlL/(γ`) ρ0|ετc|2

DIII 2 0 2 D DIII +2/3 4
√
L/(2πγ`) πρ0/|ετc ln3 |ετc||

D 1 0 1 BDI D +1/3 4
√
L/(2πγ`) πρ0/|ετc ln3 |ετc||
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Table 1.3 Classification of topological insulators and superconductors as a function of spatial dimen-
sion d and AZ symmetry class, indicated by the “Cartan label” (first column). The definition of the ten
AZ symmetry classes of single particle Hamiltonians is given in Table 1.1. The symmetry classes are
grouped in two separate lists – the complex and the real cases, respectively – depending on whether
the Hamiltonian is complex, or whether one (or more) reality conditions (arising from time-reversal or
charge-conjugation symmetries) are imposed on it; the AZ symmetry classes are ordered in such a way
that a periodic pattern in dimensionality becomes visible. [58] The symbols Z and Z2 indicate that the
topologically distinct phases within a given symmetry class of topological insulators (superconductors)
are characterized by an integer invariant (Z), or a Z2 quantity, respectively. The symbol “0” denotes the
case when there exists no topological insulator (superconductor), i.e., when all quantum ground states
are topologically equivalent to the trivial state.

Real case

Cartan\d 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 · · ·

AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z · · ·

Complex case

Cartan\d 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 · · ·

BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 · · ·
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 · · ·

DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z · · ·
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 · · ·
CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 · · ·
C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 · · ·
CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z · · ·
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The tenfold way in
quasi-one-dimensional space

This section is dedicated to a non-vanishing density of non-interacting fermions hopping
between the sites of quasi-one-dimensional lattices or between the sites defining the one-
dimensional boundary of a two-dimensional lattice. According to the Pauli exclusion princi-
ple, the non-interacting ground state is obtained by filling all the single-particle energy eigen-
states up to the Fermi energy fixed by the fermion density. The fate of this single-particle
energy eigenstate when a static and local random potential is present is known as the problem
of Anderson localization. The effect of disorder on a single-particle extended energy eigen-
state state can be threefold:
• The extended nature of the single-particle energy eigenstate is robust to disorder.
• The extended single-particle energy eigenstate is turned into a critical state.
• The extended single-particle energy eigenstate is turned into a localized state.

There are several methods allowing to decide which one of these three outcomes takes place.
Irrespectively of the dimensionality d of space, the symmetries obeyed by the static and lo-
cal random potential matter for the outcome in a dramatic fashion. To illustrate this point, I
consider the problem of Anderson localization in quasi-one-dimensional space.

2.1 Symmetries for the case of one one-dimensional channel

For simplicity, consider first the case of an infinitely long one-dimensional chain with the
lattice spacing a ≡ 1 along which a non-vanishing but finite density of spinless fermions hop
with the uniform nearest-neighbor hopping amplitude t. If periodic boundary conditions are
imposed, the single-particle Hamiltonian is the direct sum over all momenta −π ≤ k ≤ +π
within the first Brillouin zone of

H(k) ..= −2t cos k. (2.1)

The Fermi energy εF intersects the dispersion (2.1) at the two Fermi points±kF. Linearization
of the dispersion (2.1) about these two Fermi points delivers the Dirac Hamiltonian

HD ..= −τ3 i
∂

∂x
(2.2a)

in the units defined by
~ ≡ 1, vF = 2t | sin kF| ≡ 1. (2.2b)

Here, τ3 is the third Pauli matrices among the four 2× 2 matrices
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τ0 ..=
(

1 0
0 1

)
, τ1 ..=

(
0 1
1 0

)
, τ2 ..=

(
0 −i

+i 0

)
, τ3 ..=

(
+1 0
0 −1

)
. (2.2c)

The momentum eigenstate

ΨR,p(x) ..= e+ip x

(
1
0

)
(2.3a)

is an eigenstate with the single-particle energy εR(p) = +p. The momentum eigenstate

ΨL,p(x) ..= e+ip x

(
0
1

)
(2.3b)

is an eigenstate with the single-particle energy εL(p) = −p. The plane waves

ΨR,p(x, t) ..= e+ip (x−t)
(

1
0

)
(2.4a)

and

ΨL,p(x, t) ..= e+ip (x+t)

(
0
1

)
(2.4b)

are right-moving and left-moving solutions to the massless Dirac equation

i
∂

∂t
Ψ = HD Ψ, (2.4c)

respectively.
Perturb the massless Dirac Hamiltonian (2.2) with the most generic static and local one-

body potential
V(x) ..= a0(x) τ0 +m1(x) τ1 +m2(x) τ2 + a1(x) τ3. (2.5)

The real-valued function a0 is a space-dependent chemical potential. It couples to the spinless
fermions as the scalar part of the electromagnetic gauge potential does. The real-valued func-
tion a1 is a space-dependent modulation of the Fermi point. It couples to the spinless fermions
as the vector part of the electromagnetic gauge potential does. Both a0 and a1 multiply Pauli
matrices such that each commutes with the massless Dirac Hamiltonian (2.2). Neither chan-
nels are confining (localizing). The real-valued functions m1 and m2 are space-dependent
mass terms, for they multiply Pauli matrices such that each anticommutes with the massless
Dirac Hamiltonian and with each other. Either channels are confining (localizing).

Symmetry class A: The only symmetry preserved by

H ..= HD + V(x) (2.6)

with V defined in Eq. (2.5) is the global symmetry under multiplication of all states in the
single-particle Hilbert space over whichH acts by the same U(1) phase. Correspondingly, the
local two-current

Jµ(x, t) ..=
(

Ψ†Ψ,Ψ† τ3 Ψ
)

(x, t), (2.7)

obeys the continuity equation

∂µ J
µ = 0, ∂0 ..=

∂

∂t
, ∂1 ..=

∂

∂x
. (2.8)

The family of Hamiltonian (2.6) labeled by the potential V of the form (2.5) is said to belong
to the symmetry class A because of the conservation law (2.8).
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One would like to reverse time in the Dirac equation(
i
∂

∂t
Ψ

)
(x, t) = (HΨ) (x, t) (2.9)

whereH is defined by Eq. (2.6). Under reversal of time

t = −t′, (2.10)

the Dirac equation (2.9) becomes(
−i

∂

∂t′
Ψ

)
(x,−t′) = (HΨ) (x,−t′). (2.11)

Complex conjugation removes the minus sign on the left-hand side,(
i
∂

∂t′
Ψ∗
)

(x,−t′) = (HΨ)
∗

(x,−t′). (2.12)

Form invariance of the Dirac equation under reversal of time then follows if one postulates
the existence of an unitary 2× 2 matrix UT and of a phase 0 ≤ φT < 2π such that (complex
conjugation will be denoted by K)

(UT K)
2

= eiφT τ0, Ψ∗(x,−t) =..UT ΨT (x, t), HT ..= U−1
T H∗ UT , (2.13a)

in which case (
i
∂

∂t
ΨT

)
(x, t) = (HT ΨT ) (x, t). (2.13b)

Time-reversal symmetry then holds if and only if

U−1
T H∗ UT = H. (2.14)

Time-reversal symmetry must hold for the massless Dirac equation. By inspection of the
right- and left-moving solutions (2.4), one deduces that UT must interchange right and left
movers. There are two possibilities, either

UT = τ2, φT = π, (2.15)

or
UT = τ1, φT = 0. (2.16)

Symmetry class AII: Imposing time-reversal symmetry using the definition (2.15) re-
stricts the family of Dirac Hamiltonians (2.6) to

H(x) ..= −iτ3
∂

∂t
+ a0(x) τ0. (2.17)

The family of Hamiltonian (2.6) labeled by the potential V of the form (2.17) is said to belong
to the symmetry class AII because of the conservation law (2.8) and of the time-reversal
symmetry (2.14) with the representation (2.15).
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Symmetry class AI: Imposing time-reversal symmetry using the definition (2.16) restricts
the family of Dirac Hamiltonians (2.6) to

H(x) ..= −iτ3
∂

∂t
+ a0(x) τ0 +m1(x) τ1 +m2(x) τ2. (2.18)

The family of Hamiltonian (2.6) labeled by the potential V of the form (2.18) is said to be-
long to the symmetry class AI because of the conservation law (2.8) and of the time-reversal
symmetry (2.14) with the representation (2.16).

Take advantage of the fact that the dispersion relation (2.1) obeys the symmetry

H(k) = −H(k + π). (2.19)

This spectral symmetry is a consequence of the fact that the lattice Hamiltonian anticommutes
with the local gauge transformation that maps the basis of single-particle localized wave func-
tions

ψi : Z→ C, j 7→ ψi(j) ..= δij (2.20)

into the basis
ψ′i : Z→ C, j 7→ ψ′i(j) ..= (−1)j δij . (2.21)

Such a spectral symmetry is an example of a sublattice symmetry in condensed matter physics.
So far, the chemical potential

εF ≡ −2 t cos kF (2.22)

defined in Eq. (2.1) has been arbitrary. However, in view of the spectral symmetry (2.19), the
single-particle energy eigenvalue

0 = εF ≡ −2 t cos kF, kF =
π

2
, (2.23)

is special. It is the center of symmetry of the single-particle spectrum (2.1). The spectral
symmetry (2.19) is also known as a chiral symmetry of the Dirac equation (2.2a) by which

HD = −τ1HD τ1, (2.24)

after an expansion to leading order in powers of the deviation of the momenta away from the
two Fermi points ±π/2.

Symmetry class AIII: If charge conservation holds together with the chiral symmetry

H = −τ1H τ1, (2.25a)

then
H = −τ3 i∂x + a1(x) τ3 +m2(x) τ2 (2.25b)

is said to belong to the symmetry class AIII.
Symmetry class CII: It is not possible to write down a 2 × 2 Dirac equation in the sym-

metry class CII. For example, if charge conservation holds together with the chiral and time-
reversal symmetries

H = −τ1H τ1, H = +τ2H∗ τ2, (2.26a)

respectively, then
H = −τ3 i∂x (2.26b)

does not belong to the symmetry class CII, as the composition of the chiral transformation
with reversal of time squares to unity instead of minus times unity.
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Symmetry class BDI: If charge conservation holds together with the chiral and time-
reversal symmetries

H = −τ1H τ1, H = +τ1H∗ τ1, (2.27a)

then
H = −τ3 i∂x +m2(x) τ2 (2.27b)

is said to belong to the symmetry class BDI.
The global U(1) gauge symmetry responsible for the continuity equation (2.8) demands

that one treats the two components of the Dirac spinors as independent. This is not desirable
if the global U(1) gauge symmetry is to be restricted to a global Z2 gauge symmetry, as
occurs in a mean-field treatment of superconductivity. If the possibility of restricting the global
U(1) to a global Z2 gauge symmetry is to be accounted for, four more symmetry classes are
permissible.

Symmetry class D: Impose a particle-hole symmetry through

H = −H∗, (2.28a)

then
H = −τ3 i∂x +m2(x) τ2 (2.28b)

is said to belong to the symmetry class D.
Symmetry class DIII: Impose a particle-hole symmetry and time-reversal symmetry through

H = −H∗, H = +τ2H∗ τ2, (2.29a)

respectively, then
H = −τ3 i∂x (2.29b)

is said to belong to the symmetry class DIII.
Symmetry class C: Impose a particle-hole symmetry through

H = −τ2H∗ τ2, (2.30a)

then
H = a1(x) τ3 +m2(x) τ2 +m1(x) τ1 (2.30b)

is said to belong to the symmetry class C. The Dirac kinetic energy is prohibited for a 2 × 2
Dirac Hamiltonian from the symmetry class C.

Symmetry class CI: Impose a particle-hole symmetry and time-reversal symmetry through

H = −τ2H∗ τ2, H = +τ1H∗ τ1, (2.31a)

respectively, then
H = m2(x) τ2 +m1(x) τ1 (2.31b)

is said to belong to the symmetry class CI. The Dirac kinetic energy is prohibited for a 2× 2
Dirac Hamiltonian from the symmetry class CI.
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2.2 Symmetries for the case of two one-dimensional channels

Imagine two coupled linear chains along which non-interacting spinless fermions are allowed
to hop. If the two chains are decoupled and the hopping is a uniform nearest-neighbor hopping
along any one of the two chains, then the low-energy and long-wave length effective single-
particle Hamiltonian in the vicinity of the chemical potential εF = 0 is the tensor product
of the massless Dirac Hamiltonian (2.2a) with the 2 × 2 unit matrix σ0. Let the three Pauli
matrices σ act on the same vector space as σ0 does. For convenience, introduce the sixteen
Hermitean 4× 4 matrices

Xµν ..= τµ ⊗ σν , µ, ν = 0, 1, 2, 3. (2.32)

Symmetry class A: The generic Dirac Hamiltonian of rank r = 4 is

H ..= −X30 i∂x + a1,ν(x)X3ν +m2,ν(x)X2ν +m1,ν(x)X1ν + a0,ν(x)X0ν . (2.33)

The summation convention over the repeated index ν = 0, 1, 2, 3 is implied. There are four
real-valued parameters for the components a1,ν with µ = 0, 1, 2, 3 of an U(2) vector poten-
tial, eight for the components m1,ν and m2,ν with µ = 0, 1, 2, 3 of two independent U(2)
masses, and four for the components a0,ν with µ = 0, 1, 2, 3 of an U(2) scalar potential. As it
should be there are 16 real-valued free parameters (functions if one opts to break translation
invariance). If all components of the spinors solving the eigenvalue problem

HΨ(x) = εΨ(x) (2.34)

are independent, the Dirac Hamiltonian (2.33) belongs to the symmetry class A.
In addition to the conservation of the fermion number, one may impose time-reversal

symmetry on the Dirac Hamiltonian (2.33) There are two possibilities to do so.
Symmetry class AII: If charge conservation holds together with time-reversal symmetry

through
H = +X12H∗ X12, (2.35a)

then

H = −X30 i∂x+
∑

ν=1,2,3

a1,ν(x)X3ν +m2,0(x)X20 +m1,0(x)X10 +a0,0(x)X00 (2.35b)

is said to belong to the symmetry class AII.
Symmetry class AI: If charge conservation holds together with time-reversal symmetry

through
H = +X10H∗X10, (2.36a)

then

H = −X30 i∂x + a1,2(x)X32 +
∑

ν=0,1,3

[
m2,ν(x)X2ν +m1,ν(x)X1ν + a0,ν(x)X0ν

]
(2.36b)

is said to belong to the symmetry class AI.
The standard symmetry classes A, AII, and AI can be further constrained by imposing the

chiral symmetry. This gives the following three possibilities.
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Symmetry class AIII: If charge conservation holds together with the chiral symmetry

H = −X10HX01, (2.37a)

then
H = −X30 i∂x + a1,ν(x)X3ν +m2,ν(x)X2ν (2.37b)

is said to belong to the symmetry class AIII.
Symmetry class CII: If charge conservation holds together with chiral symmetry and

time-reversal symmetry

H = −X10HX10, H = +X12H∗X12, (2.38a)

respectively, then

H = −X30 i∂x +
∑

ν=1,2,3

a1,ν(x)X3ν +m2,0(x)X20 (2.38b)

is said to belong to the symmetry class CII.
Symmetry class BDI: If charge conservation holds together with chiral symmetry and

time-reversal symmetry

H = −X10HX10, H = +X10H∗X10, (2.39a)

respectively, then

H = −X30 i∂x + a1,2(x)X32 +
∑

ν=0,1,3

m2,ν(x)X2ν (2.39b)

is said to belong to the symmetry class BDI.
Now, we move to the four Bogoliubov-de-Gennes (BdG) symmetry classes by relaxing

the condition that all components of a spinor on which the Hamiltonian acts be independent.
This means that changing each component of a spinor by a multiplicative global phase factor
is not legitimate anymore. However, changing each component of a spinor by a global sign
remains legitimate. The contraints among the components of a spinor come about by imposing
a particle-hole symmetry.

Symmetry class D: Impose particle-hole symmetry through

H = −H∗, (2.40a)

then

H = −X30 i∂x+a1,2(x)X32 +
∑

ν=0,1,3

m2,ν(x)X2ν +m1,2(x)X12 +a0,2(x)X02 (2.40b)

is said to belong to the symmetry class D.
Symmetry class DIII: Impose particle-hole symmetry and time-reversal symmetry through

H = −H∗, H = +X20H∗X20, (2.41a)

respectively, then
H = −X30 i∂x + a1,2(x)X32 +m1,2(x)X12 (2.41b)

is said to belong to the symmetry class DIII.
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Symmetry class C: Impose particle-hole symmetry through

H = −X02H∗X02, (2.42a)

respectively, then

H = −X30 i∂x+
∑

ν=1,2,3

a1,ν(x)X3ν +m2,0(x)X20 +
∑

ν=1,2,3

[
m1,ν(x)X1ν + a0,ν(x)X0ν

]
(2.42b)

is said to belong to the symmetry class C.
Symmetry class CI: Impose particle-hole symmetry and time-reversal symmetry through

H = −X02H∗X02, H = +X10H∗X10, (2.43a)

respectively, then

H = −X30 i∂x + a1,2(x)X32 +m2,0(x)X20 +m1,1(x)X11 +m1,3(x)X13 + a0,3(x)X03

(2.43b)
is said to belong to the symmetry class CI.

2.3 Definition of the minimum rank

In Secs. 2.1 and 2.2, we have imposed ten symmetry restrictions corresponding to the tenfold
way introduced by Altland and Zirnbauer to Dirac Hamiltonians with Dirac matrices of rank
r = 2 and r = 4, respectively. These Dirac Hamiltonians describe the propagation of single-
particle states in one-dimensional space. All ten symmetry classes shall be called the Altland-
Zirnbauer (AZ) symmetry classes.

Observe that some of the AZ symmetries can be very restrictive for the Dirac Hamiltonians
with Dirac matrices of small rank r. For example, it is not possible to write down a Dirac
Hamiltonian of rank r = 2 in the symmetry class CII, the symmetry classes C and CI do not
admit a Dirac kinetic energy of rank r = 2, and the symmetry classes AII and DIII do not
admit Dirac masses in their Dirac Hamiltonians of rank r = 2.

This observation suggests the definition of the minimum rank rmin for which the Dirac
Hamiltonian describing the propagation in d-dimensional space for a given AZ symmetry
class admits a Dirac mass. Hence, rmin depends implicitly on the dimensionality of space and
on the AZ symmetry class. In one-dimensional space, we have found that

rA
min = 2, rAII

min = 4, rAI
min = 2,

rAIII
min = 2, rCII

min = 4, rBDI
min = 2,

rD
min = 2, rDIII

min = 4, rC
min = 4, rCI

min = 4.

(2.44)

The usefulness of this definition is the following.
First, Anderson localization in a given AZ symmetry class is impossible for any random

Dirac Hamiltonian with Dirac matrices of rank r smaller than rmin. This is the case for the
symmetry classes AII and DIII for a Dirac Hamiltonian of rank r = 2 in one-dimensional
space. The lattice realization of these Dirac Hamiltonians is along the boundary of a two-
dimensional insulator in the symmetry classes AII and DIII when the bulk realizes a topo-
logically non-trivial insulating phase owing to the fermion doubling problem. This is why an
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odd number of helical pairs of edge states in the symmetry class AII and an odd number of
helical pairs of Majorana edge states in the symmetry class DIII can evade Anderson local-
ization. The limit r = 2 for the Dirac Hamiltonians encoding one-dimensional propagation
in the symmetry classes AII and DIII are the signatures for the topologically non-trivial en-
tries of the group Z2 in column d = 2 from Table 1.3. For the symmetry classes A and D,
we can consider the limit r = 1 as a special limit that shares with a Dirac Hamiltonian the
property that it is a first-order differential operator in space, but, unlike a Dirac Hamiltonian,
this limit does no treat right- and left-movers on equal footing (and thus breaks time-reversal
symmetry explicitly). Such a first-order differential operator encodes the propagation of right
movers on the inner boundary of a two-dimensional ring (the Corbino geometry of Fig. 1.5)
while its complex conjugate encodes the propagation of left movers on the outer boundary of
a two-dimensional ring or vice versa. For the symmetry class C, one must consider two copies
of opposite spins of the r = 1 limit of class D. The limit r = 1 for Dirac Hamiltonians en-
coding one-dimensional propagation in the symmetry classes A, D, and C are realized on the
boundary of two-dimensional insulating phases supporting the integer quantum Hall effect,
the thermal integer quantum Hall effect, and the spin-resolved thermal integer quantum Hall
effect, respectively. The limits r = 1 for the Dirac Hamiltonians encoding one-dimensional
propagation in the symmetry classes A, D, and C are the signatures for the non-trivial entries
±1 and ±2 of the groups Z and 2Z in column d = 2 from Table 1.3, respectively.

Second, one can always define the quasi-d-dimensional Dirac Hamiltonian

H(x) ..= −i(α⊗ I) · ∂
∂x

+ V(x), (2.45a)

where α and β are a set of matrices that anticommute pairwise and square to the unit rmin ×
rmin matrix, I is a unit N ×N matrix, and

V(x) = m(x)β ⊗ I + · · · (2.45b)

with · · · representing all other masses, vector potentials, and scalar potentials allowed by the
AZ symmetry class. For one-dimensional space, the stationary eigenvalue problem

H(x) Ψ(x; ε) = εΨ(x; ε) (2.46)

with the given “initial value” Ψ(y; ε) is solved through the transfer matrix

Ψ(x; ε) =M(x|y; ε) Ψ(y; ε) (2.47a)

where

M(x|y; ε) ..= Px′ exp

 x∫
y

dx′ i(α⊗ I) [ε− V(x′)]

 . (2.47b)

The symbol Px′ represents path ordering. The limit N → ∞ with all entries of V indepen-
dently and identically distributed (iid) up to the AZ symmetry constraints, (averaging over the
disorder is denoted by an overline)

Vij(x) ∝ vij ,
[
Vij(x)− vij

]
[Vkl(y)− vkl] ∝ g2 e−|x−y|/ξdis , (2.48)

for i, j, k, l = 1, · · · , rminN defines the thick quantum wire limit.
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The consequences of Eq. (2.47) are the following. First, the local symmetries defining the
symmetry classes A, AII, and AI obeyed by ε − V(x′) carry through to the transfer matrix
at any single-particle energy ε. The local unitary spectral symmetries defining the symmetry
classes AIII, CII, and BDI and the local anti-unitary spectral symmetries defining the symme-
try classes D, DIII, C, and CI carry through to the transfer matrix at the single-particle energy
ε = 0. Second, the diagonal matrix entering the polar decomposition of the transfer matrix at
the band center ε = 0 is related to the non-compact symmetric spaces from the columnM
in Table 1.2. Third, the composition law obeyed by the transfer matrix that encodes enlarging
the length of a disordered wire coupled to perfect leads is matrix multiplication. It is then
possible to derive a Fokker-Planck equation for the joint probability obeyed by the radial co-
ordinates on the non-compact symmetric spaces from the columnM in Table 1.2 as the length
L of of a disordered wire coupled to perfect leads is increased. In this way, the moments of
the dimensionless Landauer conductance g in the columns δg and −ln g can be computed
(see Table 1.2). An infinitesimal increase in the length of the disordered region for one of
the ten symmetry classes induces an infinitesimal Brownian motion (see Fig. 1.8) of the Lya-
punov exponents that is solely controlled by the multiplicities of the ordinary, long, and short
roots of the corresponding classical semi-simple Lie algebra under suitable assumptions on
the disorder (locality, weakness, and isotropy between all channels). When the transfer matrix
describes the stability of the metallic phase in the thick quantum wire limit of non-interacting
fermions perturbed by static one-body random potentials with local correlations and of van-
ishing means in the bulk of a quasi-one-dimensional lattice model, the multiplicities of the
short root entering the Brownian motion of the Lyapunov exponents always vanish. However,
when the transfer matrix describes the quasi-one-dimensional boundary of a two-dimensional
topological band insulator moderately perturbed by static one-body random potentials with lo-
cal correlations, the multiplicities of the short roots is nonvanishing in the Brownian motion of
the Lyapunov exponents in the five AZ symmetry classes A, AII, D, DIII, and C. Correspond-
ingly, the conductance is of order one along the infinitely long boundary, i.e., the insulating
bulk supports extended edge states. These extended edge states can be thought of as realizing
a quasi-one-dimensional ballistic phase of quantum matter robust to disorder.

2.4 Topological spaces for the normalized Dirac masses

To study systematically the effects of static and local disorder on the insulating phases of
quasi-d-dimensional phases, it is very useful to explore the topological properties of the nor-
malized Dirac masses entering a generic random Dirac Hamiltonian of the form (2.45) within
any given AZ symmetry class. This approach allows to construct the periodic Table 1.3. [1]
Deriving columns d = 1, · · · , 8 from Table 1.3 can be achieved by brute force if one con-
structs the generic Dirac Hamiltonian with Dirac matrices of rank rmin belonging to any one
of the ten AZ symmetry classes and repeat this construction with Dirac matrices or rank 2rmin,
3rmin, and so on. It then becomes apparent that for any dimension d:

1. Five of the ten AZ symmetry classes accommodate one normalized Dirac matrix up to a
sign when the Dirac matrices have the rank r = rmin. These are the symmetry classes
that realize topologically distinct localized phases of d-dimensional quantum matter.
(a) Three of these symmetry classes are characterized by having one normalized Dirac

mass matrix that commutes with all other Dirac matrices when r = N rmin with
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N = 2, 3, · · · . These are the entries with the group Z (or 2Z when there is a de-
generacy of 2) in the periodic Table 1.3. Mathematically, the group Z is the zeroth
homotopy group of the normalized Dirac masses in the limit N →∞.

(b) Two of these symmetry classes are characterized by the fact that the sum of all mass
terms can be associated to a 2N × 2N Hermitean and antisymmetric matrix for
any r = rminN with N = 1, 2, · · · . The sign ambiguity of the Pfaffian of this
matrix indexes the two group elements in the entries with the group Z2 from the
periodic Table 1.3. Mathematically, the group Z2 is the zeroth homotopic group of
the normalized Dirac masses for N sufficiently large.

2. The topological space of normalized Dirac masses is compact and path connected for the
remaining five symmetry classes, i.e., its zeroth homotopy group is the trivial one. No
Dirac mass is singled out. The localized phase of matter is topologically trivial.

The observed periodicity of two for the complex classes and of eight for the real classes in
Table 1.3 follows from the Bott periodicity in K theory.



3

Fractionalization from Abelian
bosonization

3.1 Introduction

Abelian bosonization is attributed to Coleman, [22] Mandelstam, [77] and Luther and Peschel, [76]
respectively. Here, we follow the more general formulation of Abelian bosonization given by
Haldane in Ref. [46], as it lends itself to a description of one-dimensional quantum effec-
tive field theories arising in the low-energy sector along the boundary in space of (2 + 1)-
dimensional topological quantum field theories.

3.2 Definition

Define the quantum Hamiltonian (in units with the electric charge e, the speed of light c, and
~ set to one)

Ĥ ..=

L∫
0

dx

[
1

4π
Vij (Dx ûi)

(
Dx ûj

)
+A0

( qi
2π

K−1
ij

(
Dx ûj

))]
(t, x),

Dx ûi(t, x) ..= (∂x ûi + qiA1) (t, x).

(3.1a)

The indices i, j = 1, · · · , N label the bosonic modes. Summation is implied for repeated
indices. TheN real-valued quantum fields ûi(t, x) obey the equal-time commutation relations[

ûi(t, x), ûj(t, y)
]

..= iπ
[
Kij sgn(x− y) + Lij

]
(3.1b)

for any pair i, j = 1, · · · , N . The function sgn(x) = −sgn(−x) gives the sign of the real
variable x and will be assumed to be periodic with periodicity L. The N × N matrix K is
symmetric, invertible, and integer valued. Given the pair i, j = 1, · · · , N , any of its matrix
elements thus obey

Kij = Kji ∈ Z, K−1
ij = K−1

ji ∈ Q. (3.1c)

The N ×N matrix L is anti-symmetric

Lij = −Lji =


0, if i = j,

sgn(i− j)
(
Kij + qi qj

)
, otherwise,

(3.1d)

for i, j = 1, · · · , N . The sign function sgn(i) of any integer i is here not made periodic and
taken to vanish at the origin of Z. The external scalar gauge potential A0(t, x) and vector
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gauge potential A1(t, x) are real-valued functions of time t and space x coordinates. They are
also chosen to be periodic under x 7→ x+L. The N ×N matrix V is symmetric and positive
definite

Vij = Vji ∈ R, vi Vij vj > 0, i, j = 1, · · · , N, (3.1e)

for any nonvanishing vector v = (vi) ∈ RN . The charges qi are integer valued and satisfy

(−1)Kii = (−1)qi , i = 1, · · · , N. (3.1f)

Finally, we shall impose the boundary conditions

ûi(t, x+ L) = ûi(t, x) + 2πni, ni ∈ Z, (3.1g)

and
(∂x ûi) (t, x+ L) = (∂x ûi) (t, x), (3.1h)

for any i = 1, · · · , N .

3.3 Chiral equations of motion

For any i, j = 1, · · · , N , one verifies with the help of the equal-time commutation relations[
ûi(t, x), Dy ûj(t, y)

]
= −2πiKij δ(x− y) (3.2)

that the equations of motions are

i (∂t ûi) (t, x) ..=
[
ûi(t, x), Ĥ

]
= − iKij Vjk (∂x ûk + qk A1) (t, x)− iqiA0(t, x). (3.3)

Introduce the covariant derivatives

Dµ ûk ..=
(
∂µ ûk + qk Aµ

)
, ∂0 ≡ ∂t, ∂1 ≡ ∂x, (3.4)

for µ = 0, 1 and k = 1, · · · , N . The equations of motion

0 = δikD0 ûk +Kij VjkD1 ûk (3.5)

are chiral. Doing the substitutions ûi 7→ v̂i and K 7→ −K everywhere in Eq. (3.1) delivers
the chiral equations of motions

0 = δikD0 v̂k −Kij VjkD1 v̂k, (3.6)

with the opposite chirality. Evidently, the chiral equations of motion (3.5) and (3.6) are first-
order differential equations, as opposed to the Klein-Gordon equations of motion obeyed by a
relativistic quantum scalar field.
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3.4 Gauge invariance

The chiral equations of motion (3.5) and (3.6) are invariant under the local U(1) gauge sym-
metry

ûi(t, x) =.. û′i(t, x) + qi χ(t, x),

A0(t, x) =.. A′0(t, x)− (∂t χ) (t, x),

A1(t, x) =.. A′1(t, x)− (∂x χ) (t, x),

(3.7a)

for any real-valued function χ that satisfies the periodic boundary conditions

χ(t, x+ L) = χ(t, x). (3.7b)

Functional differentiation of Hamiltonian (3.1a) with respect to the gauge potentials allows
to define the two-current with the components

Ĵ0(t, x) ..=
δĤ

δA0(t, x)

=
1

2π
qiK

−1
ij

(
D1 ûj

)
(t, x) (3.8a)

and

Ĵ1(t, x) ..=
δĤ

δA1(t, x)

=
1

2π
qi Vij

(
D1 ûj

)
(t, x) +

1

2π

(
qiK

−1
ij qj

)
A0(t, x). (3.8b)

Introduce the short-hand notation

σH ..=
1

2π

(
qiK

−1
ij qj

)
∈ 1

2π
Q (3.9)

for the second term on the right-hand side of Eq. (3.8b). The subscript stands for Hall as we
shall shortly interpret σH as a dimensionless Hall conductance.

The transformation law of the two-current (3.8) under the local gauge transformation (3.7)
is

Ĵ0(t, x) = Ĵ0 ′(t, x) (3.10a)

and

Ĵ1(t, x) = Ĵ1 ′(t, x)− σH (∂tχ) (t, x). (3.10b)

The two-current (3.8) is only invariant under gauge transformations (3.7) that are static when
σH 6= 0.
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With the help of [
Dx ûi(t, x), Dy ûj(t, y)

]
= −2πiKij δ

′(x− y) (3.11)

for i, j = 1, · · · , N , one verifies that the total derivative of Ĵ0(t, x) is

∂ Ĵ0

∂t
= − i

[
Ĵ0, Ĥ

]
+ σH

∂ A1

∂t

= − ∂ Ĵ1

∂x
+ σH

∂ A1

∂t
. (3.12)

There follows the continuity equation

∂µ Ĵ
µ = 0 (3.13)

provided A1 is time independent or σH = 0. The continuity equation (3.13) delivers a con-
served total charge if and only if A0 and A1 are both static for arbitrary σH 6= 0.

For any non-vanishing σH, the continuity equation

∂µ Ĵ
µ = σH

∂ A1

∂t
(3.14)

is anomalous as soon as the vector gauge potential A1 is time dependent. The edge theory
(3.1) is said to be chiral when σH 6= 0, in which case the continuity equation (3.14) is anoma-
lous. The anomalous continuity equation (3.14) is form covariant under any smooth gauge
transformation (3.7). The choice of gauge may be fixed by the condition

∂ A0

∂x
= 0 (3.15a)

for which the anomalous continuity equation (3.14) then becomes(
∂µ Ĵ

µ
)

(t, x) = +σH E(t, x), (3.15b)

where

E(t, x) ..= +

(
∂ A1

∂t

)
(t, x) ≡ −

(
∂ A1

∂t

)
(t, x) (3.15c)

represents the electric field in this gauge.
To interpret the anomalous continuity equation (3.15) of the bosonic chiral edge theory

(3.1), we recall that x is a compact coordinate because of the periodic boundary conditions
(3.1g), (3.1f), and (3.7). For simplicity, we assume

E(t, x) = E(t). (3.16)

The interval 0 ≤ x ≤ L is thought of as a circle of perimeter L centered at the origin of the
three-dimensional Euclidean space as shown in Fig. 3.1. The vector potential A1(t) and the
electric field E(t) = −

(
∂ A1

∂t

)
(t) along the circle of radius R ≡ L/(2π) are then the polar
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B

x

y

z

(a) (b)

Fig. 3.1 (a) A ring of outer radius R ≡ L/(2π) and inner radius r in which electrons are confined.
A uniform and static magnetic field B normal to the ring is present. The hierarchy `B � r � R

of length scales is assumed, where `B ≡ ~ c/|eB| is the magnetic length. A time-dependent vector
potential A(t, r) is induced by a time-dependent flux supported within a solenoid of radius rsln � r.
This Corbino geometry has a cylindrical symmetry. (b) The classical motion of electrons confined to a
plane normal to a uniform static magnetic field is circular. In the limit R → ∞ holding R/r fixed, the
Corbino disk turns into a Hall bar. An electron within a magnetic length of the boundary undergoes a
classical skipping orbit. Upon quantization, a classical electron undergoing a skipping orbit turns into a
chiral electron. Upon bosonization, a chiral electron turns into a chiral boson.

components of a three-dimensional gauge field Aµ(t, r) = (A0,A)(t, r) in a cylindrical
geometry with the electro-magnetic fields

E(t, r) = −(∇A0)(t, r)− (∂tA)(t, r), B(t, r) = (∇ ∧ A)(t, r). (3.17)

The dimensionless Hall conductance σH encodes the linear response of spin-polarized
electrons confined to move along this circle in the presence of a uniform and static magnetic
field normal to the plane that contains this circle. The time-dependent anomalous term on the
right-hand side of the anomalous continuity equation (3.15b) is caused by a solenoid of radius
rsln � r � R in a puncture of the plane that contains the circle of radius rsln supporting
a time-dependent flux. The combination of this time-dependent flux with the uniform static
magnetic field exerts a Lorentz force on spin-polarized electrons moving along circles in the
ring with the inner edge of radius r and the outer edge of radius R. This Lorentz force causes
a net transfer of charge between the inner and outer edges

1

L

T∫
0

dtQ(T ) ..=

T∫
0

dt 〈Ĵ0(t)〉 = σH

T∫
0

dt E(t) (3.18)

during the adiabatic evolution with period T of the normalized many-body ground state of the
outer edge, provided we may identify the anomalous continuity equation (3.15b) with that of
chiral spin-polarized electrons propagating along the outer edge in Fig. 3.1. Hereto, separating
the many-body ground state at the outer edge from all spin-polarized electrons supported
between the inner and outer edge requires the existence of an energy scale separating it from
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many-body states in which these bulk spin-polarized electrons participate and by demanding
that the inverse of this energy scale, a length scale, is much smaller than R − r. This energy
scale is brought about by the uniform and static magnetic fieldB in Fig. 3.1. That none of this
pumped charge is lost in the shaded region of the ring follows if it is assumed that the spin-
polarized electrons are unable to transport (dissipatively) a charge current across any circle of
radius less than R and greater than r. The Hall conductance in the Corbino geometry of Fig.
3.1 is then a rank two anti-symmetric tensor proportional to the rank two Levi-Civita anti-
symmetric tensor with σH the proportionality constant in units of e2/h. The charge density
and current density for the ring obey a continuity equation as full gauge invariance is restored
in the ring.

The chiral bosonic theory (3.1) is nothing but a theory for chiral electrons at the outer
edge of the Corbino disk, as we still have to demonstrate. Chiral fermions are a fraction of the
original fermion (a spin-polarized electron). More precisely, low-energy fermions have been
split into one half that propagate on the outer edge and another half that propagate on the
inner edge of the Corbino disk. The price for this fractionalization is an apparent breakdown
of gauge invariance and charge conservation, when each chiral edge is treated independently
from the other. Manifest charge conservation and gauge invariance are only restored if all
low-energy degrees of freedom from the Corbino disk are treated on equal footing.

3.5 Conserved topological charges

Turn off the external gauge potentials

A0(t, x) = A1(t, x) = 0. (3.19)

For any i = 1, · · · , N , define the operator

N̂i(t) ..=
1

2π

L∫
0

dx (∂xûi) (t, x)

=
1

2π
[ûi(t, L)− ûi(t, 0)] .

(3.20)

This operator is conserved if and only if

(∂xûi) (t, x) = (∂xûi) (t, x+ L), 0 ≤ x ≤ L, (3.21)

for

i
(
∂tN̂i

)
(t) = − i

2π
KikVkl

[
(∂xûl) (t, L)− (∂xûl) (t, 0)

]
. (3.22)

Furthermore, if we demand that there exists an ni∈ Z such that

ûi(t, x+ L) = ûi(t, x)− 2πni, (3.23)

it then follows that
N̂i = ni. (3.24)
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The N conserved topological charges Ni with i = 1, · · · , N commute pairwise, for

[
N̂i, N̂j

]
=

1

2π

L∫
0

dy
[
N̂i,

(
∂yûj

)
(y)
]

=
1

2π

L∫
0

dy ∂y

[
N̂i, ûj(y)

]
,

(3.25)

whereby j = 1, · · · , N and [
N̂i, ûj(y)

]
= iKij (3.26)

is independent of y.
The local counterpart to the global conservation of the topological charge is

∂t ρ̂
top
i + ∂x ĵ

top
i = 0, (3.27a)

where the local topological density operator is defined by

ρ̂top
i (t, x) ..=

1

2π
(∂xûi) (t, x) (3.27b)

and the local topological current operator is defined by

ĵtop
i (t, x) ..=

1

2π
Kik Vkl (∂xûl) (t, x) (3.27c)

for i = 1, · · · , N . The local topological density operator obeys the equal-time algebra[
ρ̂top
i (t, x), ρ̂top

j (t, y)
]

= − i

2π
Kij ∂xδ(x− y) (3.28a)

for any i, j = 1, · · · , N . The local topological current operator obeys the equal-time algebra[
ĵtop
i (t, x), ĵtop

j (t, y)
]

= − i

2π
KikVklKjk′Vk′l′ Kll′ ∂xδ(x− y) (3.28b)

for any i, j = 1, · · · , N . Finally,[
ρ̂top
i (t, x), ĵtop

j (t, y)
]

= − i

2π
Kjk VklKil ∂xδ(x− y) (3.28c)

for any i, j = 1, · · · , N .
Introduce the local charges and currents

ρ̂i(t, x) ..= K−1
ij ρ̂

top
j (t, x) (3.29a)

and
ĵi(t, x) ..= K−1

ij ĵ
top
j (t, x), (3.29b)
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respectively, for any i = 1, · · · , N . The continuity equation (3.27a) is unchanged under this
linear transformation,

∂t ρ̂i + ∂x ĵi = 0, (3.29c)

for any i = 1, · · · , N . The topological current algebra (3.28) transforms into

[
ρ̂i(t, x), ρ̂j(t, y)

]
= − i

2π
K−1
ij ∂xδ(x− y), (3.30a)[

ĵi(t, x), ĵj(t, y)
]

= − i

2π
Vik VjlKkl ∂xδ(x− y), (3.30b)[

ρ̂i(t, x), ĵj(t, y)
]

= − i

2π
Vij ∂xδ(x− y), (3.30c)

for any i, j = 1, · · · , N .
At last, if we contract the continuity equation (3.29c) with the integer-valued charge vector,

we obtain the flavor-global continuity equation

∂t ρ̂+ ∂x ĵ = 0, (3.31a)

where the local flavor-global charge operator is

ρ̂(t, x) ..= qiK
−1
ij ρ̂top

j (t, x) (3.31b)

and the local flavor-global current operator is

ĵ(t, x) ..= qiK
−1
ij ĵtop

j (t, x). (3.31c)

The flavor-resolved current algebra (3.30) turns into the flavor-global current algebra

[ρ̂(t, x), ρ̂(t, y)] = − i

2π

(
qiK

−1
ij qj

)
∂xδ(x− y), (3.32a)[

ĵ(t, x), ĵ(t, y)
]

= − i

2π

(
qi VikKkl Vlj qj

)
∂xδ(x− y), (3.32b)[

ρ̂(t, x), ĵ(t, y)
]

= − i

2π

(
qi Vij qj

)
∂xδ(x− y). (3.32c)

3.6 Quasi-particle and particle excitations

When Eq. (3.19) holds, there existN conserved global topological (i.e., integer valued) charges
N̂i with i = 1, · · · , N defined in Eq. (3.20) that commute pairwise. Define the N global
charges

Q̂i ..=

L∫
0

dx ρ̂i(t, x) = K−1
ij N̂j , i = 1, · · · , N. (3.33)

These charges shall shortly be interpreted as the elementary Fermi-Bose charges.
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For any i = 1, · · · , N , define the pair of vertex operators

Ψ̂†q-p,i(t, x) ..= e−iK−1
ij ûj(t,x) (3.34a)

and
Ψ̂†f-b,i(t, x) ..= e−iδij ûj(t,x), (3.34b)

respectively. The quasi-particle vertex operator Ψ̂†q-p,i(t, x) is multi-valued under a shift by
2π of all ûj(t, x) where j = 1, · · · , N . The Fermi-Bose vertex operator Ψ̂†f-b,i(t, x) is single-
valued under a shift by 2π of all ûj(t, x) where j = 1, · · · , N .

For any pair i, j = 1, · · · , N , the commutator (3.26) delivers the identities[
N̂i, Ψ̂†q-p,j(t, x)

]
= δij Ψ̂†q-p,j(t, x),

[
N̂i, Ψ̂†f-b,j(t, x)

]
= Kij Ψ̂†f-b,j(t, x), (3.35)

and [
Q̂i, Ψ̂

†
q-p,j(t, x)

]
= K−1

ij Ψ̂†q-p,j(t, x),
[
Q̂i, Ψ̂

†
f-b,j(t, x)

]
= δij Ψ̂†f-b,j(t, x), (3.36)

respectively. The quasi-particle vertex operator Ψ̂†q-p,i(t, x) is an eigenstate of the topological
number operator N̂i with eigenvalue one. The Fermi-Bose vertex operator Ψ̂†f-b,i(t, x) is an
eigenstate of the charge number operator Q̂i with eigenvalue one.

The Baker-Campbell-Hausdorff formula implies that

eÂ eB̂ = eÂ+B̂ e+(1/2)[Â,B̂] = eB̂ eÂ e[Â,B̂] (3.37)

whenever two operators Â and B̂ have a C-number as their commutator.
A first application of the Baker-Campbell-Hausdorff formula to any pair of quasi-particle

vertex operator at equal time t but two distinct space coordinates x 6= y gives

Ψ̂†q-p,i(t, x) Ψ̂†q-p,j(t, y) = e−iπΘq-p
ij Ψ̂†q-p,j(t, y) Ψ̂†q-p,i(t, x), (3.38a)

where

Θq-p
ij

..= K−1
ji sgn(x− y) +

(
K−1
ik K−1

jl Kkl + qkK
−1
ik K−1

jl ql

)
sgn(k − l). (3.38b)

Here and below, it is understood that

sgn(k − l) = 0 (3.39)

when k = l = 1, · · · , N . Hence, the quasi-particle vertex operators obey neither bosonic nor
fermionic statistics since K−1

ij ∈ Q.
The same exercise applied to the Fermi-Bose vertex operators yields

Ψ̂†f-b,i(t, x) Ψ̂†f-b,j(t, y) =


(−1)Kii Ψ̂†f-b,i(t, y) Ψ̂†f-b,i(t, x), if i = j,

(−1)qi qj Ψ̂†f-b,j(t, y) Ψ̂†f-b,i(t, x), if i 6= j,

(3.40)

when x 6= y. The self statistics of the Fermi-Bose vertex operators is carried by the diagonal
matrix elements Kii ∈ Z. The mutual statistics of any pair of Fermi-Bose vertex operators
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labeled by i 6= j is carried by the product qi qj ∈ Z of the integer-valued charges qi and
qj . Had we not assumed that Kij with i 6= j are integers, the mutual statistics would not be
Fermi-Bose because of the non-local term Kijsgn (x− y).

A third application of the Baker-Campbell-Hausdorff formula allows to determine the
boundary conditions

Ψ̂†q-p,i(t, x+ L) = Ψ̂†q-p,i(t, x) e−2πiK−1
ij N̂j e−πiK−1

ii (3.41)

and
Ψ̂†f-b,i(t, x+ L) = Ψ̂†f-b,i(t, x) e−2πi N̂i e−πiKii (3.42)

obeyed by the quasi-particle and Fermi-Bose vertex operators, respectively.
This discussion closes with the following definitions. Introduce the operators

Q̂ ..= qi Q̂i, Ψ̂†q-p,m ..= e−imiK
−1
ij ûj(t,x), Ψ̂†f-b,m ..= e−imiδij ûj(t,x) (3.43)

where m ∈ ZN is the vector with the integer-valued components mi for any i = 1, · · · , N .
The N charges qi with i = 1, · · · , N that enter Hamiltonian (3.1a) can also be viewed as the
components of the vector q ∈ ZN . Define the functions

q : ZN → Z,
m 7→ q(m) ..= qimi ≡ q ·m,

(3.44a)

and

K : ZN → Z,
m 7→ K(m) ..= miKijmj .

(3.44b)

On the one hand, for any distinct pair of space coordinate x 6= y, we deduce from Eqs. (3.36),
(3.38), and (3.41) that[

Q̂, Ψ̂†q-p,m(t, x)
]

=
(
qiK

−1
ij mj

)
Ψ̂†q-p,m(t, x), (3.45a)

Ψ̂†q-p,m(t, x) Ψ̂†q-p,n(t, y) = e−iπmi Θq-p
ij nj Ψ̂†q-p,n(t, y) Ψ̂†q-p,m(t, x), (3.45b)

Ψ̂†q-p,m(t, x+ L) = Ψ̂†q-p,m(t, x) e−2πimiK
−1
ij N̂j e−πimiK

−1
ij mj , (3.45c)

respectively. On the other hand, for any distinct pair of space coordinate x 6= y, we deduce
from Eqs. (3.36), (3.40), and (3.42) that[

Q̂, Ψ̂†f-b,m(t, x)
]

= q(m) Ψ̂†f-b,m(t, x), (3.46a)

Ψ̂†f-b,m(t, x) Ψ̂†f-b,n(t, y) = e−iπmi Θf-b
ij nj Ψ̂†f-b,n(t, y) Ψ̂†f-b,m(t, x), (3.46b)

Ψ̂†f-b,m(t, x+ L) = Ψ̂†f-b,m(t, x) e−2πimiN̂i e−πimiKijmj , (3.46c)

respectively, where

Θf-b
ij ..= Kij sgn(x− y) +

(
Kij + qi qj

)
sgn(i− j). (3.46d)
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The integer quadratic formK(m) is thus seen to dictate whether the vertex operator Ψ̂†f-b,m(t, x)

realizes a fermion or a boson. The vertex operator Ψ̂†f-b,m(t, x) realizes a fermion if and only
if

K(m) is an odd integer (3.47)

or a boson if and only if
K(m) is an even integer. (3.48)

Because of assumption (3.1f),

(−1)K(m) = (−1)q(m). (3.49)

Hence, the vertex operator Ψ̂†f-b,m(t, x) realizes a fermion if and only if

q(m) is an odd integer (3.50)

or a boson if and only if
q(m) is an even integer. (3.51)

3.7 Bosonization rules

We are going to relate the theory of chiral bosons (3.1) without external gauge fields to a
massless Dirac Hamiltonian. To this end, we proceed in three steps.

Step 1: Make the choices

N = 2, i, j = 1, 2 ≡ −,+, (3.52a)

and

K ..=
(

+1 0
0 −1

)
, V ..=

(
+1 0
0 +1

)
, q =

(
1
1

)
, (3.52b)

in Eq. (3.1). With this choice, the free bosonic Hamiltonian on the real line is

ĤB =

∫
R

dx
1

4π

[
(∂x û−)2 + (∂x û+)2

]
, (3.53a)

where

[û−(t, x), û−(t, y)] = +iπ sgn(x− y), (3.53b)
[û+(t, x), û+(t, y)] = −iπ sgn(x− y), (3.53c)
[û−(t, x), û+(t, y)] = +iπ. (3.53d)

There follows the chiral equations of motion [recall Eq. (3.3)]

∂t û− = −∂x û−, ∂t û+ = +∂x û+, (3.54)

obeyed by the right-mover û− and the left-mover û+
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ρ̂(t, x), ρ̂(t, y)

]
= 0, (3.55a)[

ĵ(t, x), ĵ(t, y)
]

= 0, (3.55b)[
ρ̂(t, x), ĵ(t, y)

]
= − i

π
∂xδ(x− y), (3.55c)

obeyed by the density

ρ̂ = +
1

2π

(
∂x û− − ∂x û+

)
≡ ĵ− + ĵ+ (3.55d)

and the current density 1

ĵ = +
1

2π

(
∂x û− + ∂x û+

)
≡ ĵ− − ĵ+, (3.55e)

and the identification of the pair of vertex operators [recall Eq. (3.34b)]

ψ̂†− ..=

√
1

4π a
e−iû− , ψ̂†+ ..=

√
1

4π a
e+iû+ , (3.56)

with a pair of creation operators for fermions. The multiplicative prefactor 1/
√

4π is a matter
of convention and the constant a carries the dimension of length, i.e., the fermion fields carries
the dimension of 1/

√
length. By construction, the chiral currents

ĵ− ..= +
1

2π
∂x û−, ĵ+ ..= − 1

2π
∂x û+, (3.57)

obey the chiral equations of motion

∂t ĵ− = −∂x ĵ−, ∂t ĵ− = +∂x ĵ−, (3.58)

i.e., they depend solely on (t − x) and (t + x), respectively. As with the chiral fields û− and
û+, the chiral currents ĵ− and ĵ+ are right-moving and left-moving solutions, respectively, of
the Klein-Gordon equation

(∂2
t − ∂2

x) f(t, x) = (∂t − ∂x) (∂t + ∂x) f(t, x) = 0. (3.59)

Step 2: Define the free Dirac Hamiltonian

ĤD ..=
∫
R

dx ψ̂† γ0 γ1 i∂x ψ̂ ≡
∫
R

dx ˆ̄ψ γ1 i∂x ψ̂, (3.60a)

where {
ψ̂(t, x), ψ̂†(t, y)

}
= τ0 δ(x− y) (3.60b)

delivers the only non-vanishing equal-time anti-commutators. If we define the chiral projec-
tions (γ5 ≡ −γ5 ≡ −γ0γ1)

1Notice that the chiral equations of motion implies that ĵ = − 1
2π

(
∂t û− − ∂t û+

)
.
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ψ̂†∓ ..= ψ̂†
1

2
(1∓ γ5), ψ̂∓ ..=

1

2
(1∓ γ5) ψ̂ , (3.61a)

there follows the chiral equations of motion

∂t ψ̂− = −∂x ψ̂−, ∂t ψ̂+ = +∂x ψ̂+. (3.61b)

The annihilation operator ψ̂− removes a right-moving fermion. The annihilation operator ψ̂+

removes a left-moving fermion. Moreover, the Lagrangian density

LD ..= ψ̂† γ0 iγµ ∂µ ψ̂ (3.62)

obeys the additive decomposition

LD = ψ̂†− i(∂0 + ∂1) ψ̂− + ψ̂†+ i(∂0 − ∂1) ψ̂+ (3.63)

with the two independent chiral currents

ĵD− ..= 2 ψ̂†− ψ̂−, ĵD+ ..= 2 ψ̂†+ ψ̂+, (3.64a)

obeying the independent conservation laws

∂t ĵD− = −∂x ĵD−, ∂t ĵD+ = +∂x ĵD+. (3.64b)

Finally, it can be shown that if the chiral currents are normal ordered with respect to the
filled Fermi sea with a vanishing chemical potential, then the only non-vanishing equal-time
commutators are [

ĵD−(t, x), ĵD−(t, y)
]

= − i

2π
∂x δ(x− y), (3.65a)

and [
ĵD+(t, x), ĵD+(t, y)

]
= +

i

2π
∂x δ(x− y). (3.65b)

Step 3: The Dirac chiral current algebra (3.65) is equivalent to the bosonic chiral current
algebra (3.55). This equivalence is interpreted as the fact that (i) the bosonic theory (3.53) is
equivalent to the Dirac theory (3.60), and (ii) there is a one-to-one correspondence between
the following operators acting on their respective Fock spaces. To establish this one-to-one
correspondence, we introduce the pair of bosonic fields

φ̂(x0, x1) ..= û−(x0 − x1) + û+(x0 + x1), (3.66a)

θ̂(x0, x1) ..= û−(x0 − x1)− û+(x0 + x1). (3.66b)

Now, the relevant one-to-one correspondence between operators in the Dirac theory for fermions
and operators in the chiral bosonic theory is given in Table 3.1.
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Table 3.1 Abelian bosonization rules in two-dimensional Minkowski space. The conventions of rele-
vance to the scalar mass ˆ̄ψ ψ̂ and the pseudo-scalar mass ˆ̄ψ γ5 ψ̂ are ˆ̄ψ = ψ̂† γ0 with ψ̂† = (ψ̂†−, ψ̂

†
+),

whereby γ0 = τ1 and γ1 = iτ2 so that γ5 = −γ5 = −γ0 γ1 = τ3.

Fermions Bosons

Kinetic energy ˆ̄ψ iγµ ∂µ ψ̂
1

8π (∂µ φ̂)(∂µ φ̂)

Current ˆ̄ψ γµ ψ̂ 1
2π ε

µν ∂ν φ̂

Chiral currents 2 ψ̂†∓ ψ̂∓ ± 1
2π∂x û∓

Right and left movers ψ̂†∓

√
1

4π a e
∓iû∓

Backward scattering ψ̂†− ψ̂+
1

4π a e
−iφ̂

Cooper pairing ψ̂†− ψ̂
†
+

1
4π a e

−iθ̂

Scalar mass ψ̂†− ψ̂+ + ψ̂†+ ψ̂−
1

2π a cos φ̂

Pseudo-scalar mass ψ̂†− ψ̂+ − ψ̂†+ ψ̂− −i
2π a sin φ̂

3.8 From the Hamiltonian to the Lagrangian formalism

What is the Minkowski path integral that is equivalent to the quantum theory defined by
Eq. (3.1)? In other words, we seek the path integrals

Z(±) ..=
∫
D[u] eiS(±)[u] (3.67a)

with the Minkowski action

S(±)[u] ..=

+∞∫
−∞

dt L(±)[u] ≡
+∞∫
−∞

dt

L∫
0

dxL(±)[u](t, x) (3.67b)

such that one of the two Hamiltonians

H(±) ..=

L∫
0

dx
[
Π

(±)
i (∂t ui)− L(±)[u]

]
(3.68)

can be identified with Ĥ in Eq. (3.1a) after elevating the classical fields

ui(t, x) (3.69a)



36 Fractionalization from Abelian bosonization

and

Π
(±)
i (t, x) ..=

δL(±)

δ(∂t ui)(t, x)
(3.69b)

entering L(±)[u] to the status of quantum fields ûi(t, x) and Π̂
(±)
j (t, y) upon imposing the

equal-time commutation relations[
ûi(t, x), Π̂

(±)
j (t, y)

]
= ± i

2
δij δ(x− y) (3.69c)

for any i, j = 1, · · · , N . The unusual factor ±1/2 (instead of 1) on the right-hand side of the
commutator between pairs of canonically conjugate fields arises because each scalar field ui
with i = 1, · · · , N is chiral, i.e., it represents “one-half” of a canonical scalar field.

We try

L(±) ..=
1

4π

[
∓ (∂x ui)K

−1
ij

(
∂t uj

)
− (∂x ui)Vij

(
∂x uj

)]
(3.70a)

with the chiral equations of motion

0 = ∂µ
δL(±)

δ ∂µ ui
− δL(±)

δ ui

= ∂t
δL(±)

δ ∂t ui
+ ∂x

δL(±)

δ ∂x ui
− δL(±)

δ ui

=
1

4π

(
∓K−1

ji ∂t ∂x ∓K−1
ij ∂x ∂t − 2Vij ∂x ∂x

)
uj

= ∓
K−1
ij

2π
∂x

(
δil ∂t ±Kjk Vkl ∂x

)
ul

(3.70b)

for any i = 1, · · · , N . Observe that the term that mixes time t and space x derivatives only
becomes imaginary in Euclidean time τ = it.

Proof The canonical momentum Π
(±)
i to the field ui is

Π
(±)
i (t, x) ..=

δL(±)

δ (∂t ui)(t, x)
= ∓ 1

4π
K−1
ij

(
∂x uj

)
(t, x) (3.71)

for any i = 1, · · · , N owing to the symmetry of the matrix K. Evidently, the Legendre trans-
form

H(±) ..= Π
(±)
i (∂t ui)− L(±) (3.72)

delivers

H(±) =
1

4π
(∂x ui) Vij

(
∂x uj

)
. (3.73)

The right-hand side does not depend on the chiral index ±. We now quantize the theory by
elevating the classical fields ui to the status of operators ûi obeying the algebra (3.1b). This
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gives a quantum theory that meets all the demands of the quantum chiral edge theory (3.1) in
all compatibility with the canonical quantization rules (3.69c), for[

ûi(t, x), Π̂
(±)
j (t, y)

]
= ∓ 1

4π
K−1
jk ∂y [ûi(t, x), ûk(t, y)]

Eq. (3.1b) = ∓ 1

4π
K−1
jk (πi)Kik (−2)δ(x− y)

Kik = Kki = ± i

2
K−1
jk Kki δ(x− y)

= ± i

2
δij δ(x− y)

(3.74)

where i, j = 1, · · · , N . 2

Finally, analytical continuation to Euclidean time

τ = it (3.75a)

allows to define the finite-temperature quantum chiral theory through the path integral

Z
(±)
β

..=
∫
D[u] exp

− β∫
0

dτ

L∫
0

dxL(±)

 , (3.75b)

L(±) ..=
1

4π

[
(±)i (∂x ui) K

−1
ij

(
∂τ uj

)
+ (∂x ui) Vij

(
∂x uj

)]
+ J

( qi
2π

K−1
ij (∂x uj)

)
, (3.75c)

in the presence of an external source field J that couples to the charges qi like a scalar potential
would do.

3.9 Applications to polyacetylene

Consider the Dirac Hamiltonian

ĤD ..= ĤD 0 + ĤD 1, (3.76a)

where the free-field and massless contribution is

ĤD 0 ..=
∫
R

dx
(
ψ̂†+ i∂x ψ̂+ − ψ̂†− i∂x ψ̂−

)
, (3.76b)

while

ĤD 1 ..=
∫
R

dx
[
φ1

(
ψ̂†− ψ̂+ + ψ̂†+ ψ̂−

)
+ iφ2

(
ψ̂†− ψ̂+ − ψ̂†+ ψ̂−

)]
(3.76c)

couples the Dirac field to two real-valued and classical scalar fields φ1 and φ2. The only
non-vanishing equal-time anti-commutators are given by Eq. (3.60b).
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According to the bosonization rules from Table 3.1 and with the help of the polar decom-
position

φ1(t, x) = |φ(t, x)| cosϕ(t, x), φ2(t, x) = |φ(t, x)| sinϕ(t, x), (3.77)

the many-body bosonic Hamiltonian that is equivalent to the Dirac Hamiltonian (3.76) is

ĤB ..= ĤB 0 + ĤB 1, (3.78a)

where

ĤB 0 ..=
∫
R

dx
1

8π

[
Π̂2 +

(
∂x φ̂

)2
]
, (3.78b)

while
ĤB 1 ..=

∫
R

dx
1

2π a
|φ| cos

(
φ̂− ϕ

)
. (3.78c)

Here, the canonical momentum

Π̂(t, x) ..=
(
∂t φ̂

)
(t, x) (3.79a)

shares with φ̂(t, x) the only non-vanishing equal-time commutator[
φ̂(t, x), Π̂(t, y)

]
= iδ(x− y). (3.79b)

Hamiltonian (3.78) is interacting, and its interaction (3.78c) can be traced to the mass
contributions in the non-interacting Dirac Hamiltonian (3.76). The interaction (3.78c) is min-
imized when the operator identity

φ̂(t, x) = ϕ(t, x) + π (3.80)

holds. This identity can only be met in the limit

|φ(t, x)| → ∞ (3.81)

for all time t and position x in view of the algebra (3.79) and the competition with the contri-
butions (3.78b) and (3.78c).

Close to the limit (3.81), the bosonization formula for the conserved current

ˆ̄ψ γµ ψ̂ → 1

2π
εµν ∂ν φ̂ (3.82)

simplifies to
1

2π
εµν ∂ν φ̂ ≈

1

2π
εµν ∂νϕ. (3.83)

On the one hand, the conserved charge

Q̂ ..=
∫
R

dx
(

ˆ̄ψ γ0 ψ̂
)

(t, x)→ ε01

2π

[
φ̂(t, x = +∞)− φ̂(t, x = −∞)

]
(3.84)
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for the static profile ϕ(x) is approximately given by

Q̂ ≈ ε01

2π
[ϕ(x = +∞)− ϕ(x = −∞)] . (3.85)

On the other hand, the number of electrons per period T = 2π/ω that flows across a point x

Î ..=

T∫
0

dt
(

ˆ̄ψ γ1 ψ̂
)

(t, x)→ ε10

2π

[
φ̂(T, x)− φ̂(0, x)

]
(3.86)

for the uniform profile ϕ(t) = ω t is approximately given

Î ≈ ε10

2π
ω T = ε10. (3.87)

Results (3.85) and (3.87) are sharp operator identities in the limit (3.81). The small parameter
in both expansions is 1/m where m ..= limx→∞ |φ(t, x)|.
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Stability analysis for the edge theory
in the symmetry class AII

4.1 Introduction

The hallmark of the integer quantum effect (IQHE) in an open geometry is the localized
nature of all two-dimensional (bulk) states while an integer number of chiral edge states freely
propagate along the one-dimensional boundaries. [63, 67, 47] These chiral edge states are
immune to the physics of Anderson localization as long as backward scattering between edge
states of opposite chiralities is negligible. [67, 47]

Many-body interactions among electrons can be treated perturbatively in the IQHE pro-
vided the characteristic many-body energy scale is less than the single-particle gap between
Landau levels. This is not true anymore if the chemical potential lies within a Landau level as
the non-interacting many-body ground state is then macroscopically degenerate. The lifting of
this extensive degeneracy by the many-body interactions is a non-perturbative effect. At some
“magic” filling fractions that deliver the fractional quantum Hall effect (FQHE), [118,113,68,
43] a screened Coulomb interaction selects a finitely degenerate family of ground states, each
of which describes a featureless liquid separated from excitations by an energy gap in a closed
geometry. Such a ground state is called an incompressible fractional Hall liquid. The FQHE
is an example of topological order. [125,124,129] In an open geometry, there are branches of
excitations that disperse across the spectral gap of the two-dimensional bulk, but these exci-
tations are localized along the direction normal to the boundary while they propagate freely
along the boundary. [129, 126, 128, 127] Contrary to the IQHE, these excitations need not all
share the same chirality. However, they are nevertheless immune to the physics of Anderson
localization provided scattering induced by the disorder between distinct edges in an open
geometry is negligible.

The integer quantum Hall effect (IQHE) is the archetype of a two-dimensional topolog-
ical band insulator. The two-dimensional Z2 topological band insulator is a close relative of
the IQHE that occurs in semi-conductors with sufficiently large spin-orbit coupling but no
breaking of time-reversal symmetry. [54, 55, 11, 10, 64] As with the IQHE, the smoking gun
for the Z2 topological band insulator is the existence of gapless Kramers degenerate pairs of
edge states that are delocalized along the boundaries of an open geometry as long as disorder-
induced scattering between distinct boundaries is negligible. In contrast to the IQHE, it is
the odd parity in the number of Kramers pairs of edge states that is robust to the physics of
Anderson localization.

A simple example of a two-dimensional Z2 topological band insulator can be obtained
by putting together two copies of an IQHE system with opposite chiralities for up and down



Introduction 41

y

– Ly/2 + Ly/2

Fig. 4.1 Cylindrical geometry for a two-dimensional band insulator. The cylinder axis is labeled by
the coordinate y. Periodic boundary conditions are imposed in the transverse direction labeled by the
coordinate x. There is an edge at y = −Ly/2 and another one at y = +Ly/2. Bulk states have a
support on the shaded surface of the cylinder. Edge states are confined in the y direction to the vicinity
of the edges y = ±Ly/2. Topological band insulators have the property that there are edge states freely
propagating in the x direction even in the presence of disorder with the mean free path ` provided the
limit `/Ly � 1 holds.

spins. For instance, one could take two copies of Haldane’s model, [45] each of which realizes
an integer Hall effect on the honeycomb lattice, but with Hall conductance differing by a sign.
In this case the spin current is conserved, a consequence of the independent conservation of
the up and down currents, and the spin Hall conductance inherits its quantization from the
IQHE of each spin species. This example thus realizes an integer quantum spin Hall effect
(IQSHE). However, although simple, this example is not generic. The Z2 topological band
insulator does not necessarily have conserved spin currents, let alone quantized responses.

Along the same line of reasoning, two copies of a FQHE system put together, again with
opposite chiralities for up and down particles, would realize a fractional quantum spin Hall
effect (FQSHE), as proposed by Bernevig and Zhang. [11] (See also Refs. [33] and [48].)
Levin and Stern in Ref. [70] proposed to characterize two-dimensional fractional topological
liquids supporting the FQSHE by the criterion that their edge states are stable against disorder
provided that they do not break time-reversal symmetry spontaneously.

In this chapter, the condition that projection about some quantization axis of the electron
spin from the underlying microscopic model is a good quantum number is not imposed. Only
time-reversal symmetry is assumed to hold. The generic cases of fractional topological liq-
uids with time-reversal symmetry from the special cases of fractional topological liquids with
time-reversal symmetry and with residual spin-1/2 U(1) rotation symmetry will thus be dis-
tinguished. In the former cases, the electronic spin is not a good quantum number. In the latter
cases, conservation of spin allows the FQSHE.

The subclass of incompressible time-reversal-symmetric liquids that we construct here is
closely related to Abelian Chern-Simons theories. Other possibilities that are not discussed,
may include non-Abelian Chern Simons theories, [34,80] or theories that include, additionally,
conventional local order parameters (Higgs fields). [100]

The relevant effective action for the Abelian Chern-Simons theory is of the form [124,
129, 126, 127]

S ..= S0 + Se + Ss, (4.1a)

where

S0 ..= −
∫

dtd2x εµνρ
1

4π
Kij a

i
µ ∂ν a

j
ρ, (4.1b)
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Se ..=
∫

dtd2x εµνρ
e

2π
QiAµ∂ν a

i
ρ, (4.1c)

and

Ss ..=
∫

dtd2x εµνρ
s

2π
SiBµ∂ν a

i
ρ. (4.1d)

The indices i and j run from 1 to 2N and any pair thereof labels an integer-valued matrix
element Kij of the symmetric and invertible 2N × 2N matrix K. The indices µ, ν, and ρ run
from 0 to 2. They either label the component xµ of the coordinates (t,x) in (2+1)-dimensional
space and time or the component Aµ(t,x) of an external electromagnetic gauge potential, or
the component Bµ(t,x) of an external gauge potential that couples to the spin-1/2 degrees of
freedom along some quantization axis, or the components of 2N flavors of dynamical Chern-
Simons fields aiµ(t,x). The integer-valued component Qi of the 2N -dimensional vector Q
represents the i-th electric charge in units of the electronic charge e and obeys the compatibil-
ity condition

(−1)Qi = (−1)Kii (4.1e)

for any i = 1, · · · , 2N in order for bulk quasiparticles or, in an open geometry, quasipar-
ticles on edges to obey a consistent statistics. The integer-valued component Si of the 2N -
dimensional vector S represents the i-th spin charge in units of the spin charge s along some
conserved quantization axis. The operation of time reversal is the map

Aµ(t,x) 7→ +gµν Aν(−t,x), (4.2a)

Bµ(t,x) 7→ −gµν bν(−t,x), (4.2b)

aiµ(t,x) 7→ −gµνai+Nν (−t,x), (4.2c)

for i = 1, · · · , N . Here, gµν = diag(+1,−1,−1) is the Lorentz metric in (2+1)-dimensional
space and time. It will be shown that time-reversal symmetry imposes that the matrix K is of
the block form

K =

(
κ ∆

∆T −κ

)
, (4.3a)

κT = κ, ∆T = −∆, (4.3b)

where κ and ∆ areN ×N matrices, while the integer-charge vectorsQ and S are of the block
forms

Q =

(
%
%

)
, S =

(
%
−%

)
. (4.3c)

The K matrix together with the charge vector Q and spin vector S that characterize the
topological field theory with the action (4.1a) define the charge filling fraction, a rational
number,

νe ..= QT K−1 Q (4.4a)

and the spin filling fraction, another rational number,
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νs ..=
1

2
QT K−1 S, (4.4b)

respectively. The block forms of K and Q in Eq. (4.3) imply that

νe = 0. (4.4c)

The “zero charge filling fraction” (4.4c) states nothing but the fact that there is no charge Hall
conductance when time-reversal symmetry holds. On the other hand, time-reversal symmetry
of the action (4.1a) is compatible with a non-vanishing FQSHE as measured by the non-
vanishing quantized spin-Hall conductance

σsH ..=
e

2π
× νs. (4.4d)

The origin of the FQSHE in the action (4.1a) is the U(1) × U(1) gauge symmetry when
(2 + 1)-dimensional space and time has the same topology as a manifold without boundary.
It is always assumed that the U(1) symmetry associated with charge conservation holds in
this lecture. However, we shall not do the same with the U(1) symmetry responsible for the
conservation of the “spin” quantum number.

The special cases of the FQSHE treated in Refs. [11] and [70] correspond to imposing the
condition

∆ = 0 (4.5)

on the K matrix in Eq. (4.3a). This restriction is, however, not necessary to treat either the
FQSHE or the generic case when there is no residual spin-1/2 U(1) symmetry in the underly-
ing microscopic model.

The effective topological field theory (4.1) with the condition for time-reversal symme-
try (4.3) is made of 2N Abelian Chern-Simons fields. As is the case with the FQHE, when two-
dimensional space is a manifold without boundary of genus one, i.e., when two-dimensional
space is topologically equivalent to a torus, it is characterized by distinct topological sec-
tors. [125, 124, 129] All topological sectors are in one-to-one correspondence with a finite
number NGS of topologically degenerate ground states of the underlying microscopic the-
ory. [125, 124, 129] This degeneracy is nothing but the magnitude of the determinant K in
Eq. (4.1a), which is, because of the block structure (4.3a), in turn given by

NGS =

∣∣∣∣det

(
κ ∆

∆T −κ

)∣∣∣∣
=

∣∣∣∣det

(
∆T −κ
κ ∆

)∣∣∣∣
=

∣∣∣∣Pf

(
∆T −κ
κ ∆

)∣∣∣∣2
= (integer)

2
. (4.6)

To reach the last line, the fact that the K matrix is integer valued was used. It is thus pre-
dicted that the class of two-dimensional time-reversal-symmetric fractional topological liq-
uids, whose universal properties are captured by Eqs. (4.1) and (4.3), are characterized by a
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topological ground state degeneracy that is always the square of an integer, even if ∆ 6= 0,
when space is topologically equivalent to a torus. (Notice that the condition that ∆ is anti-
symmetric implies that non-vanishing ∆ can only occur for N > 1.)

The stability of the edge states associated with the bulk Chern-Simons action (4.1) obey-
ing the condition for the time-reversal symmetry (4.3) is discussed in detail. A single one-
dimensional edge is considered and an interacting quantum field theory for 1 ≤ NK ≤ N
pairs of Kramers degenerate electrons subject to strong disorder that preserves time-reversal
symmetry is constructed. (The integer 2NK is the number of odd charges entering the charge
vector Q. [2]) The conditions under which at least one Kramers degenerate pair of electrons
remains gapless in spite of the interactions and disorder are identified. This approach is here
inspired by the stability analysis of the edge states performed for the single-layer FQHE by
Haldane in Ref. [46] (see also Refs. [53] and [82]), by Naud et al. in Refs. [84] and [85] for
the bilayer FQHE, and specially that by Levin and Stern in Ref. [70] for the FQSHE and that
in Ref. [88]. As for the FQSHE, our analysis departs from the analysis of Haldane in that we
impose time-reversal symmetry. In this lecture, we also depart from Ref. [70] by considering
explicitly the effects of the off-diagonal elements ∆ in the K-matrix. Such terms are gener-
ically present for any realistic underlying microscopic model independently of whether this
underlying microscopic model supports or not the FQSHE. When considering the stability of
the edge theory, we allow the residual spin-1/2 U(1) symmetry responsible for the FQSHE to
be broken by interactions among the edge modes or by a disorder potential. Hence, we seek a
criterion for the stability of the edge theory that does not rely on the existence of a quantized
spin Hall conductance in the bulk as was done in Ref. [70].

The stability of the edge states against disorder hinges on whether the integer

R ..= r %T (κ−∆)−1 % (4.7)

is odd (stable) or even (unstable). The vector % together with the matrices κ and ∆ were
defined in Eq. (4.3). The integer r is the smallest integer such that all theN components of the
vector r (κ−∆)−1 % are integers. One can quickly check a few simple examples. First, observe
that, in the limit ∆ = 0, we recover the criterion derived in Ref. [70]. Second, when we impose
a residual spin-1/2 U(1) symmetry by appropriately restricting the interactions between edge
channels, ν↑ = −ν↓ = %T(κ−∆)−1 % can be interpreted as the Hall conductivity σxy in units
of e2/h for each of the separately conserved spin components along the spin quantization axis.
The integer r has the interpretation of the number of fluxes needed to pump a unit of charge,
or the inverse of the “minimum charge” of Ref. [70]. Further restricting to the case when
κ = 11N gives R = N , i.e., we have recovered the same criterion as for the two-dimensional
non-interacting Z2 topological band insulator.

When there is no residual spin-1/2U(1) symmetry, one can no longer relate the indexR to
a physical spin Hall conductance. Nevertheless, the index R defined in Eq. (4.7) discriminates
in all cases whether there is or not a remaining branch of gapless modes dispersing along the
edge.

4.2 Definitions

Consider an interacting model for electrons in a two-dimensional cylindrical geometry as is
depicted in Fig. 4.1. Demand that (i) charge conservation and time-reversal symmetry are the
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only intrinsic symmetries of the microscopic quantum Hamiltonian, (ii) neither are broken
spontaneously by the many-body ground state, and (iii), if periodic boundary conditions are
assumed along the y coordinate in Fig. 4.1, then there is at most a finite number of degenerate
many-body ground states and each many-body ground state is separated from its tower of
many-body excited states by an energy gap. Had the condition that time-reversal symmetry
holds been relaxed, the remaining assumptions would be realized for the FQHE.

In the open geometry of Fig. 4.1, the only possible excitations with an energy smaller than
the bulk gap in the closed geometry of a torus must be localized along the y coordinate in the
vicinities of the edges at ±Ly/2. If Ly is much larger than the characteristic linear extension
into the bulk of edge states, the two edges decouple from each other. It is then meaningful to
define a low-energy and long-wavelength quantum field theory for the edge states propagating
along any one of the two boundaries in Fig. 4.1, which we take to be of length L each.

The low-energy and long-wavelength effective quantum field theory for the edge that we
are going to construct is inspired by the construction by Wen of the chiral Luttinger edge
theory for the FQHE. [126, 124, 127] As for the FQHE, this time-reversal symmetric bound-
ary quantum field theory has a correspondence to the effective time-reversal symmetric bulk
topological quantum-field theory built out of 2N Abelian Chern-Simon fields.

The simplest class of quantum Hamiltonians that fulfills requirements (i)–(iii) can be rep-
resented in terms of 2N real-valued chiral scalar quantum fields Φ̂i(t, x) with i = 1, . . . , 2N

that form the components of the quantum vector field Φ̂(t, x). After setting the electric charge
e, the speed of light c, and ~ to unity, the Hamiltonian for the system is given by 1

Ĥ ..= Ĥ0 + Ĥint, (4.8a)

where

Ĥ0 ..=

L∫
0

dx
1

4π

(
∂xΦ̂T

)
(t, x)V (x)

(
∂xΦ̂

)
(t, x), (4.8b)

with V (x) a 2N × 2N symmetric and positive definite matrix that accounts, in this bosonic
representation, for the screened density-density interactions between electrons. The theory is
quantized according to the equal-time commutators[

Φ̂i(t, x), Φ̂j(t, x
′)
]

= −iπ
[
K−1
ij sgn(x− x′) + Θij

]
, (4.8c)

where K is a 2N × 2N symmetric and invertible matrix with integer-valued matrix elements,
and the Θ matrix accounts for Klein factors that ensure that charged excitations in the theory
(vertex operators) satisfy the proper commutation relations. Fermionic or bosonic charged
excitations are represented by the normal ordered vertex operators

Ψ̂†T (t, x) ..= : e−iTiKij Φ̂j(t,x) :, (4.8d)

where the integer-valued 2N -dimensional vector T determines the charge (and statistics) of
the operator. The operator that measures the total charge density is

1Do the linear transformation ûi ≡ Kij Φ̂j in Eq. (3.1), where we recall that the matrix K and its inverse K−1

are symmetric so that we may write Θij ≡ K
−1
ii′ Li′j′ K

−1
j′j .
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ρ̂(t, x) =
1

2π
Qi

(
∂xΦ̂i

)
(t, x), (4.8e)

where the integer-valued 2N -dimensional charge vector Q, together with the K-matrix, spec-
ify the universal properties of the edge theory. The charge qT of the vertex operator in Eq. (4.8d)
follows from its commutation with the charge density operator in Eq. (4.8e), yielding qT =
TTQ.

Tunneling of electronic charge among the different edge branches is accounted for by

Ĥint ..= −
L∫

0

dx
∑
T∈L

hT (x) : cos
(
TTK Φ̂(t, x) + αT (x)

)
: . (4.8f)

The real functions hT (x) ≥ 0 and 0 ≤ αT (x) ≤ 2π encode information about the disorder
along the edge when position dependent. The set

L ..=
{
T ∈ Z2N

∣∣TTQ = 0
}
, (4.8g)

encodes all the possible charge neutral tunneling processes (i.e., those that just rearrange
charge among the branches). This charge neutrality condition implies that the operator Ψ̂†T (t, x)
that makes up Eq. (4.8f) is bosonic, for it has even charge. Observe that set L forms a lattice.
Consequently, if T belongs to L so does −T . In turn, relabeling T to −T in Ĥint implies that
hT (x) = +h−T (x) whereas αT (x) = −α−T (x).

The theory (4.8) is inherently encoding interactions. The terms Ĥ0 and Ĥint encode single-
particle as well as many-body interactions with matrix elements that preserve and break trans-
lation symmetry, respectively. Recovering the single-particle kinetic energy of N Kramers
degenerate pairs of electrons from Eq. (4.8b) corresponds to choosing the matrix V to be pro-
portional to the unit 2N × 2N matrix with the proportionality constant fixed by the condition
that the scaling dimension of each electron is 1/2 at the bosonic free-field fixed point defined
by Hamiltonian Ĥ0. Of course, to implement the fermionic statistics for all 2N fermions, one
must also demand that all diagonal entries of K are odd integers in some basis. [2]

4.3 Time-reversal symmetry of the edge theory

The operation of time-reversal on the Φ̂ fields is defined by

T Φ̂(t, x) T −1 ..= Σ1 Φ̂(−t, x) + πK−1 Σ↓Q, (4.9a)

where

Σ1 =

(
0 11
11 0

)
Σ↓ =

(
0 0
0 11

)
. (4.9b)

This definition ensures that the fermionic and bosonic vertex operators defined in Eq. (4.8d)
are properly transformed under reversal of time. More precisely, one can then construct a pair
of fermionic operators Ψ̂†1 and Ψ̂†2 of the form (4.8d) by suitably choosing a pair of vectors
T1 and T2, respectively, in such a way that the operation of time-reversal maps Ψ̂†1 into +Ψ̂†2
whereas it maps Ψ̂†2 into−Ψ̂†1. Thus, it is meaningful to interpret the block structure displayed
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in Eq. (4.9b) as arising from the upper or lower projection along some spin-1/2 quantization
axis.

Time-reversal symmetry on the chiral edge theory (4.8) demands that

V = +Σ1 V Σ1, (4.10a)

K = −Σ1K Σ1, (4.10b)

Q = Σ1Q, (4.10c)

hT (x) = hΣ1T
(x), (4.10d)

αT (x) =
(
−αΣ1 T

(x) + πTT Σ↓Q
)

mod 2π. (4.10e)

Proof The first two conditions, Eqs. (4.10a) and (4.10b), follow from the requirement that Ĥ0

be time-reversal invariant. In particular, the decomposition

K =

(
κ ∆

∆T −κ

)
κT = κ, ∆T = −∆, (4.11)

where κ and ∆ are N ×N matrices, follows from Eq. (4.10b) and K = KT.
The third condition, Eq. (4.10c), states that the charge density is invariant under time

reversal. In particular, the decomposition

Q =

(
%
%

)
(4.12)

follows.
Finally, T ĤintT −1 = Ĥint requires that∑

T∈L
hT (x) cos

(
TTK Φ̂(t, x) + αT (x)

)
=

∑
T∈L

T
[
hT (x) cos

(
TTK Φ̂(t, x) + αT (x)

)]
T −1 =

∑
T∈L

hT (x) cos
(
− (Σ1 T )

T
K Φ̂(−t, x) + αT (x)− πTT Σ↓Q

)
=

∑
T∈L

hΣ1 T
(x) cos

(
−TTK Φ̂(−t, x) + αΣ1 T

(x)− π(Σ1 T )T Σ↓Q
)

=

∑
T∈L

hΣ1T
(x) cos

(
TTK Φ̂(−t, x)− αΣ1 T

(x) + π(Σ1T )T Σ↓Q
)
, (4.13)

as the conditions needed to match the two trigonometric expansions. This leads to the last two
relations, Eqs. (4.10d) and (4.10e). qed
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Disorder parametrized by hT (x) = +h−T (x) and αT (x) = −α−T (x) and for which the
matrix T obeys

Σ1 T = −T, (4.14a)

and

TT Σ↓Q is an odd integer, (4.14b)

cannot satisfy the condition (4.10e) for time-reversal symmetry. Such disorder is thus prohib-
ited to enter Ĥint in Eq. (4.8f), for it would break explicitly time-reversal symmetry otherwise.

Moreover, we also prohibit any ground state that provides exp
(

iTTK Φ̂(t, x)
)

with an ex-
pectation value when T satisfies Eq. (4.14), for it would break spontaneously time-reversal
symmetry otherwise.

4.4 Pinning the edge fields with disorder potentials: the Haldane
criterion

Solving the interacting theory (4.8) is beyond the scope of this lecture. What can be done,
however, is to identify those fixed points of the interacting theory (4.8) that are pertinent to
the question of whether or not some edge modes remain extended along the edge in the limit of
strong disorder hT (x)→∞ for all tunneling matrices T ∈ L entering the interaction (4.8f).

This question is related to the one posed and answered by Haldane in Ref. [46] for Abelian
FQH states and which, in the context of this lecture, would be as follows. Given an interaction
potential caused by weak disorder on the edges as defined by Hamiltonian (4.8f), what are the
tunneling vectors T ∈ L that can, in principle, describe relevant perturbations that will cause
the system to flow to a strong coupling fixed point characterized by hT → ∞ away from the
fixed point Ĥ0? (See Ref. [131] for an answer to this weak-coupling question in the context
of the IQSHE and Z2 topological band insulators.) By focusing on the strong coupling limit
from the outset, we avoid the issue of following the renormalization group flow from weak to
strong coupling. Evidently, this point of view presumes that the strong coupling fixed point is
stable and that no intermediary fixed point prevents it from being reached.

To identify the fixed points of the interacting theory (4.8) in the strong coupling limit
(strong disorder limit) hT → ∞, we ignore the contribution Ĥ0 and restrict the sum over the
tunneling matrices in Ĥint to a subset H of L (H ⊂ L) with a precise definition of H that
will follow in Eq. (4.21). For any choice of H, there follows the strong-coupling fixed point
Hamiltonian

ĤH ..= −
L∫

0

dx
∑
T∈H

hT (x) : cos
(
TTK Φ̂(x) + αT (x)

)
: . (4.15)

Assume that a fixed point Hamiltonian (4.15) is stable if and only if the set H is “maximal”.
The study of the renormalization group flows relating the weak, moderate (if any), and the
strong fixed points in the infinite-dimensional parameter space spanned by the non-universal
data V , hT (x), and αT (x) is again beyond the scope of this lecture.
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One might wonder why we cannot simply choose H = L. This is a consequence of the
chiral equal-time commutation relations (4.8c), as emphasized by Haldane in Ref. [46], that
prevent the simultaneous locking of the phases of all the cosines through the condition

∂x

(
TTK Φ̂(t, x) + αT (x)

)
= CT (x) (4.16)

for some time-independent and real-valued function CT (x) on the canonical momentum

(4π)−1K (∂xΦ̂)(t, x) (4.17)

that is conjugate to Φ̂(t, x), when applied to the ground state. The locking condition (4.16)
removes a pair of chiral bosonic modes with opposite chiralities from the gapless degrees of
freedom of the theory. However, even in the strong-coupling limit, there are quantum fluc-
tuations as a consequence of the chiral equal-time commutation relations (4.8c) that prevent
minimizing the interaction Ĥint by minimizing separately each contribution to the trigono-
metric expansion (4.8f). Finding the ground state in the strong coupling limit is a strongly
frustrated problem of optimization.

To construct a maximal set H, demand that any T ∈ H must satisfy the locking condi-
tion (4.16). Furthermore, require that the phases of the cosines entering the fixed point Hamil-
tonian (4.15) be constants of motion[

∂x

(
TTK Φ̂(t, x)

)
, ĤH

]
= 0 . (4.18)

To find the tunneling vectors T ∈ H, one thus needs to consider the following commutator
L∫

0

dx′
[
∂x

(
TTK Φ̂(t, x)

)
, hT ′(x

′) cos
(
T ′TK Φ̂(t, x′) + αT ′(x

′)
)]

=

− i 2π TTK T ′ hT ′(x) sin
(
T ′TK Φ̂(t, x) + αT ′(x)

)
,

(4.19)

and demand that it vanishes. This is achieved if TTK T ′ = 0. Equation (4.19) implies that
any set H is composed of the charge neutral vectors satisfying

TTK T ′ = 0. (4.20)

It is by choosing a set H to be “maximal” that we shall obtain the desired Haldane criterion
for stability.

4.5 Stability criterion for edge modes

Section 4.1 presented and briefly discussed the criteria for at least one branch of edge exci-
tations to remain delocalized even in the presence of strong disorder. Here these criteria are
proved.

The idea is to count the maximum possible number of edge modes that can be pinned
(localized) along the edge by tunneling processes. The set of pinning processes must satisfy

TTQ = 0 TTK T ′ = 0, (4.21)

which defines a set H introduced in Sec. 4.4. (Note, however, that H is not uniquely determined
from this condition.) Define the real extension V of a set H, by allowing the tunneling vectors
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T that satisfy Eq. (4.21) to take real values instead of integer values. Notice that V is a vector
space over the real numbers. Demand that H forms a lattice that is as dense as the lattice L by
imposing

V ∩ L = H. (4.22)

For any vector T ∈ V, consider the vector K T . It follows from Eq. (4.21) that K T ⊥
T ′,∀T ′ ∈ V. So K maps the space V into an orthogonal space V⊥. Since K is invertible,
we have V⊥ = K V as well as V = K−1 V⊥, and thus dim V = dim V⊥. Since dimV +
dimV⊥ ≤ 2N , it follows that dimV ≤ N . Therefore (as could be anticipated physically) the
maximum number of Kramers pairs of edge modes that can be pinned is N . If that happens,
the edge has no gapless delocalized mode.

Next, we look at the conditions for which the maximum dimension N is achieved in order
to establish a contradiction.

Assume that dimV = dimV⊥ = N . It follows that V ⊕ V⊥ = R2N , exhausting the
space of available vectors. In this case the charge vector Q ∈ V⊥ because of Eq. (4.21).
Consequently, K−1Q ∈ V. We can then construct an integer vector T̄ ‖ K−1Q by scaling
K−1Q with the minimum integer r that accomplishes this. (This is always possible because
K−1 is a matrix with rational entries and Q is a vector of integers.) Because the inverse
of K is not known, it seems hopeless to write K−1Q in closed form. However, K−1 must
anticommutes with Σ1 given that K anticommutes with Σ1, while Σ1 squares to the unit
matrix. Hence, K−1Q is an eigenstate of Σ1 with eigenvalue −1. Now,

T̄ ..= r

(
+(κ−∆)−1 %
−(κ−∆)−1 %

)
(4.23)

is also an eigenstate of Σ1 with eigenvalue −1. This suggests that we may use T̄ instead of
K−1Q. Indeed, the existence of (κ−∆)−1 follows from detK 6= 0 and

detK = (−1)N [det(κ−∆)]
2
. (4.24)

Moreover, one verifies that T̄ is orthogonal to the charge vector Q and that K T̄ is orthogonal
to T̄ .

Equipped with T̄ , we construct the integer

R ..= −T̄ T Σ↓Q. (4.25)

It is the parity of this integer number that will allow us to establish a contradiction, i.e., it is
the parity of R that determines if it is possible or not to localize all the modes with the N
tunneling operators. To establish the contradiction, we employ Eq. (4.10e) together with the
fact that Σ1 T̄ = −T̄ . In other words,

πR =− πT̄T Σ↓Q

=
(
− αT̄ (x)− αΣ1 T̄

(x)
)

mod 2π

=
(
− αT̄ (x)− α−T̄ (x)

)
mod 2π

= 0 mod 2π,

(4.26)

where in the last line αT (x) = −α−T (x) for all T ∈ L was used. If T̄ satisfies Eq. (4.26),
thenR must be an even integer. If Eq. (4.26) is violated (i.e.,R is an odd integer) then T̄ is not
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allowed to enter Ĥint for it would otherwise break time-reversal symmetry [thus h
T̄

(x) = 0

must always hold in this case to prevent T̄ from entering Ĥint]. One therefore arrives at the
condition that

• If the maximum number of edge modes are localized or gaped, then R must be even.

A corollary is that

• If R is odd, at least one edge branch is gapless and delocalized.

It remains to prove that if R is even, then one can indeed reach the maximum dimension
N for the space of pinning vectors. This is done by construction. Take all eigenvectors of
Σ1 with +1 eigenvalue. Choose (N − 1) of such vectors, all those orthogonal to Q. For
the last one, choose T̄ . One can check that these N vectors satisfy Eq. (4.21) with the help
of Σ1K Σ1 = −K [listed in Eq. (4.10b)] and of T̄ ‖ K−1Q. Now, the (N − 1) vectors
Σ1T = +T are of the form TT = (tT, tT), where we need to satisfy TTQ = 2tT% = 0. This
leads to TT Σ↓Q even, and then Eq. (4.10e) brings no further conditions whatsoever. So we
can take all these (N − 1) tunneling vectors. Finally, we take T̄ as constructed above, which
is a legitimate choice since R is assumed even and thus consistent with Eq. (4.26). Hence, we
have constructed the N tunneling vectors that gap or localize all edge modes, and can state
that

• If R is even, then the maximum number of edge modes are localized or gaped.
As a by-product, we see that it is always possible to localize along the boundary at least all

but one Kramers degenerate pair of edge states via the (N − 1) tunneling vectors that satisfy
Σ1T = +T . Thus, either one or no Kramers degenerate pair of edge state remains delocalized
along the boundary when translation invariance is strongly broken along the boundary.

4.6 The stability criterion for edge modes in the FQSHE

What is the fate of the stability criterion when we impose the residual spin-1/2U(1) symmetry
in the model so as to describe an underlying microscopic model that supports the FQSHE? The
residual spin-1/2 U(1) symmetry is imposed on the interacting theory (4.8) by positing the
existence of a spin vector S = −Σ1 S ∈ Z2N associated to a conserved U(1) spin current.
This spin vector is the counterpart to the charge vector Q = +Σ1Q ∈ Z2N . The condition

S = −Σ1 S (4.27a)

is required for compatibility with time-reversal symmetry and is the counterpart to Eq. (4.10c).
Compatibility with time-reversal symmetry of Q and S thus imply that they are orthogonal,
QT S = 0. If we restrict the interaction (4.8f) by demanding that the tunneling matrices obey

TT S = 0, (4.27b)

we probe the stability of the FQSHE described by Ĥ0 when perturbed by Ĥint.
2

2It is important to observe that the quadratic Hamiltonian (4.8b) has a much larger symmetry group than the
interacting Hamiltonian (4.8f). For example, Ĥ0 commutes with the transformation
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To answer this question we supplement the condition TTQ = 0 on tunneling vectors that
belong to L and H, by TTS = 0. By construction, S is orthogonal to Q. Hence, it remains
true that H is made of at most N linearly independent tunneling vectors.

The strategy for establishing the condition for the strong coupling limit of Ĥint to open a
mobility gap for all the extended modes of Ĥ0 thus remains to construct the largest set H out
of as few tunneling vectors with T = −Σ1 T as possible, since these tunneling vectors might
spontaneously break time-reversal symmetry.

As before, there are (N − 1) linearly independent tunneling vectors with T = +Σ1 T ,
while the tunneling matrix T̄ from Eq. (4.23) must belong to any H with N linearly indepen-
dent tunneling vectors.

At this stage, we need to distinguish the case

T̄T S = 0 (4.28a)

from the case
T̄T S 6= 0. (4.28b)

In the former case, the spin neutrality condition (4.27b) holds for T̄ and thus the stability
criterion is unchanged for the FQSHE. In the latter case, the spin neutrality condition (4.27b)
is violated so that Ĥint is independent of any tunneling matrix proportional to T̄ . Thus, when
Eq. (4.28b) holds, as could be the case when κ ∝ 11N and ∆ = 0 say, the FQSHE carried
by at least one Kramers pair of edge states of Ĥ0 is robust to the strong coupling limit of the
time-reversal symmetric and residual spin-1/2 U(1) symmetric perturbation Ĥint.

Φ̂(t, x) −→ Φ̂(t, x) + πK−1 Σ↓ S.

One verifies that the transformation law of a Kramers doublet of fermions under this transformation is the one ex-
pected from a rotation about the quantization axis of the residual spin-1/2 U(1) symmetry provided the parities of the
components of S are the same as those of Q. Hence, Ĥ0 has, by construction, the residual spin-1/2 U(1) symmetry
even though a generic microscopic model with time-reversal symmetry does not. This residual spin-1/2 U(1) symme-
try of Ĥ0 is broken by Ĥint, unless one imposes the additional constraint (4.27b) on the tunneling matrices T ∈ L
allowed to enter the interacting theory defined in Eq. (4.8).



5

Construction of two-dimensional
topological phases from coupled
wires

5.1 Introduction

One accomplishment in the study of topological phases of matter has been the theoretical pre-
diction and experimental discovery of two-dimensional topological insulators. [54, 55, 11, 10,
64] The integer quantum Hall effect (IQHE) is an early example of how states can be classified
into distinct topological classes using an integer, the Chern number, to express the quantized
Hall conductivity. [63, 67, 117] In the IQHE, the number of delocalized edge channels is pro-
portional to the quantized Hall conductivity through the Chern number. More recently, it has
been found that the symmetry under reversal of time protects the parity in the number of
edge modes in (bulk) insulators with strong spin-orbit interactions in two and three dimen-
sions. [54,35] Correspondingly, these systems are characterized by a Z2 topological invariant.

The discovery of Z2 topological insulators initiated a search for a classification of phases
of fermionic matter that are distinct by some topological attribute. For non-interacting elec-
trons, a complete classification, the tenfold way, has been accomplished in arbitrary dimen-
sions. [106, 107, 103, 58] In this scheme, three discrete symmetries that act locally in position
space – time-reversal symmetry (TRS), particle-hole symmetry (PHS), and chiral or sublattice
symmetry (SLS) – play a central role when defining the quantum numbers that identify the
topological insulating fermionic phases of matter within one of the ten symmetry classes (see
columns 1-3 from Table 5.1).

The tenfold way is believed to be robust to a perturbative treatment of short-ranged electron-
electron interactions for the following reasons. First, the unperturbed ground state in the clean
limit and in a closed geometry is non-degenerate. It is given by the filled bands of a band
insulator. The band gap provides a small expansion parameter, namely the ratio of the charac-
teristic interacting energy scale to the band gap. Second, the quantized topological invariant
that characterizes the filled bands, provided its definition and topological character survives
the presence of electron-electron interactions as is the case for the symmetry class A in two
spatial dimensions, cannot change in a perturbative treatment of short-range electron-electron
interactions. [41]

On the other hand, the fate of the tenfold way when electron-electron interactions are
strong is rather subtle. [28, 41, 78, 122] For example, short-range interactions can drive the
system through a topological phase transition at which the energy gap closes. [97, 16] They
may also break spontaneously a defining symmetry of the topological phase. Even when short-
range interactions neither spontaneously break the symmetries nor close the gap, it may be that
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two phases from the non-interacting tenfold way cease to be distinguishable in the presence of
interactions. Indeed, it was shown for the symmetry class BDI in one dimension by Fidkowski
and Kitaev that the non-interacting Z classification is too fine in that it must be replaced by
a Z8 classification when generic short-range interactions are allowed. How to construct a
counterpart to the tenfold way for interacting fermion (and boson) systems has thus attracted
a lot of interest. [39, 95, 108, 18, 19, 29, 119, 40, 73, 17, 74]

The fractional quantum Hall effect (FQHE) is the paradigm for a situation by which in-
teractions select topologically ordered ground states of a very different kind than the non-
degenerate ground states from the tenfold way. On a closed two-dimensional manifold of
genus g, interactions can stabilize incompressible many-body ground states with a g-dependent
degeneracy. Excited states in the bulk must then carry fractional quantum numbers (see Ref. [128]
and references therein). Such phases of matter, that follow the FQHE paradigm, appear in
the literature under different names: fractional topological insulators, long-range entangled
phases, topologically ordered phases, or symmetry enriched topological phases. In this sec-
tion, the terminology long-range entangled (LRE) phase is used for all phases with nontriv-
ial g-dependent ground state degeneracy. All other phases, i.e., those that follow the IQHE
paradigm, are called short-range entangled (SRE) phases. (In doing so, the terminology of
Ref. [73] is borrowed. It differs slightly from the one used in Ref. [18]. The latter counts all
chiral phases irrespective of their ground state degeneracy as LRE.)

While there are nontrivial SRE and LRE phases in the absence of any symmetry constraint,
many SRE and LRE phases are defined by some symmetry they obey. If this symmetry is
broken, the topological attribute of the phase is not well defined any more. However, there
is a sense in which LRE phases are more robust than SRE phases against a weak breaking
of the defining symmetry. The topological attributes of LRE phases are not confined to the
boundary in space between two distinct topological realizations of these phases, as they are for
SRE phases. They also characterize intrinsic bulk properties such as the existence of gapped
deconfined fractionalized excitations. Hence, whereas gapless edge states are gapped by any
breaking of the defining symmetry, topological bulk properties are robust to a weak breaking
of the defining symmetry as long as the characteristic energy scale for this symmetry breaking
is small compared to the bulk gap in the LRE phase, for a small breaking of the protecting
symmetry does not wipe out the gapped deconfined fractionalized bulk excitations.

The purpose of this section is to implement a classification scheme for interacting elec-
tronic systems in two spatial dimensions that treats SRE and LRE phases on equal footing. To
this end, a coupled wire construction for each of the symmetry classes from the tenfold way is
used. This approach has been pioneered in Refs. [132] and [69] for the IQHE and in Refs. [56]
and [116] for the FQHE (see also related work in Refs. [112, 79, 61, 62, 109, 121]).

The main idea is here the following. To begin with, non-chiral Luttinger liquids are placed
in a periodic array of coupled wires. In doing so, forward-scattering two-body interactions are
naturally accounted for within each wire. Back-scatterings (i.e., tunneling) within a given wire
or between neighboring wires are assumed to be the dominant energy scales. Imposing sym-
metries constrains these allowed tunnelings. Whether a given arrangement of tunnelings truly
gaps out all bulk modes, except for some non-gapped edge states on the first and last wire, is
verified with the help of a condition that applies to the limit of strong tunneling. This condition
is nothing but the Haldane criterion of Sec. 4.4. [46] It will be shown that, for a proper choice
of the tunnelings, all bulk modes are gapped. Moreover, in five out of the ten symmetry classes
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j = N � 1

j = N � 1
T (0)

a) b)

j = 1

j = 1

Fig. 5.1 (Taken from Ref. [86]) The boundary conditions determine whether a topological phase has
protected gapless modes or not. (a) With open boundary conditions, gapless modes exist near the wires
j = 1 and j = N , the scattering between them is forbidden by imposing locality in the limit N → ∞.
(b) Periodic boundary conditions allow the scattering vector T (0) that gaps modes which were protected
by locality before.

of the tenfold way, there remain gapless edge states in agreement with the tenfold way. It is
the character of the tunnelings that determines if this wire construction selects a SRE or a LRE
phase. Hence, this construction, predicated as it is on the strong tunneling limit, generalizes
the tenfold way for SRE phases to LRE phases. Evidently, this edge-centered classification
scheme does not distinguish between LRE phases of matter that do not carry protected gap-
less edge modes at their interfaces. For example, some fractional, time-reversal-symmetric,
incompressible and topological phases of matter can have fractionalized excitations in the
bulk, while not supporting protected gapless modes at their boundaries. [126, 104, 83]

The section is inspired from Ref. [86]. It is organized as follows. The array of Luttinger
liquids is defined in Sec. 5.2. The Haldane criterion, which plays an essential role for the
stability analysis of the edge theory, is reviewed in Sec. 5.3.3. All five SRE entries of Table 5.1
are derived in Sec. 5.4, while all five LRE entries of Table 5.1 are derived in Sec. 5.5.

The main result of this section is Table 5.1. For each of the symmetry classes A, AII, D,
DIII, and C entering Table 5.1, the ground state supports propagating gapless edge modes
localized on the first and last wire that are immune to local and symmetry-preserving pertur-
bations. The first column labels the symmetry classes according to the Cartan classification
of symmetric spaces. The second column dictates if the operations for reversal of time (Θ̂
with the single-particle representation Θ), exchange of particles and holes (Π̂ with the single-
particle representation Π), and reversal of chirality (Ĉ with the single-particle representation
C) are the generators of symmetries with their single-particle representations squaring to +1,
−1, or are not present in which case the entry 0 is used. (A chiral symmetry is present if there
exists a chiral operator Ĉ that is antiunitary and commutes with the Hamiltonian. The single-
particle representation C of Ĉ is a unitary operator that anticommutes with the single-particle
Hamiltonian. In a basis in which C is strictly block off diagonal, C reverses the chirality.
This chirality is unrelated to the direction of propagation of left and right movers which is
also called chirality in these lectures.) The third column is the set to which the topological
index from the tenfold way, defined as it is in the non-interacting limit, belongs to. The fourth
column is a pictorial representation of the interactions (a set of tunnelings vectors T ) for the
two-dimensional array of quantum wires that delivers short-range entangled (SRE) gapless
edge states. A wire is represented by a colored box with the minimum number of channels
compatible with the symmetry class. Each channel in a wire is either a right mover (⊗) or a
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Table 5.1 Realization of a two-dimensional array of quantum wires in each symmetry class of the
tenfold way.

Θ2 Π2 C2 SRE topological phase LRE topological phase

A 0 0 0 Z Fig. 5.2(a) Fig. 5.2(b)

AIII 0 0 + NONE

AII − 0 0 Z2 Fig. 5.2(c) Fig. 5.2(d)

DIII − + − Z2 Fig. 5.2(e) Fig. 5.2(f)

D 0 + 0 Z Fig. 5.2(g) Fig. 5.2(h)

BDI + + + NONE

AI + 0 0 NONE

CI + − − NONE

C 0 − 0 Z Fig. 5.2(i) Fig. 5.2(j)

CII − − + NONE

left mover (�) that may or may not carry a spin quantum number (↑, ↓) or a particle (yellow
color) or hole (black color) attribute. The lines describe tunneling processes within a wire or
between consecutive wires in the array that are of one-body type when they do not carry an
arrow or of strictly many-body type when they carry an arrow. Arrows point toward the sites
on which creation operators act and away from the sites on which annihilation operators act.
For example in the symmetry class A, the single line connecting two consecutive wires in
the SRE column represents a one-body backward scattering by which left and right movers
belonging to consecutive wires are coupled. The lines have been omitted for the fifth (LRE)
column, only the tunneling vectors are specified.

5.2 Definitions

Consider an array ofN parallel wires that stretch along the x direction of the two-dimensional
embedding Euclidean space (see Fig. 5.1). Label a wire by the Latin letter i = 1, · · · , N . Each
wire supports fermions that carry an even integer number M of internal degrees of freedom
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(a) ...
T=(  + +| +  –  | + + |        )

(b) ...
T=(  + +|  2 -1 |  1 -2 |        )

(c)

...

T=( + + + +  | + + +  –  | –  + + +  )

T=(  + + + + | + –  – +  |  + + + +  )

(d)
...

T=( + + + +  | -1     2     | -2     1      )

T=(  + + + + | +  1     -2 |     2 + -1 )

(e)
T=( + + + + + + + + | + + + + – + + + | + – + + + + + + )
T=( + + + + + + + + | + + + – + + + + | + + + + + + – + )

T=( + + + + + + + + | + + – + – + + + | + + + + + + + + )
T=( + + + + + + + + | + + + – + – + + | + + + + + + + + )

...

(f)
T=( + + + + + + + + | -1    2     -2    1     | -2    1      -1    2    )
T=( + + + + + + + + |    -2    1     -1    2  |     -1!    2     -2    1 )

T=( + + + + + + + + | + + – + – + + + | + + + + + + + + )
T=( + + + + + + + + | + + + – + – + + | + + + + + + + + )=( )

...

(g)
...

T=( + + + +  | + +  – + | – + + +  )

T=(  + + + + | + –  – + | + + + +  )

(h)
...

T=(  + + + + | + –  – + | + + + +  )

T=( + + + +  | -1 2  -2 1 | -2 1 -1 2  )

(i)
T=( + + + + + + + + | + + + + – + + + | + – + + + + + + )
T=( + + + + + + + + | + + + – + + + + | + + + + + + – + )

 + )

...

T=( + + + + + + + + | + + – + – + + + | + + + + + + + + )
T=( + + + + + + + + | + + + – + – + + | + + + + + + + + )

(j)
T=( + + + + + + + + |    -1 2     -2       1  |    -2 1      -1       2 )
T=( + + + + + + + + | 1       -2      2 -1    | 2       -1      1 -2    )

T=( + + + + + + + + | + + – + – + + + | + + + + + + + + )
T=( + + + + + + + + | + + + – + – + + | + + + + + + + + )=( )

...

Fig. 5.2 Figures entering Table 5.1.

that discriminate between left- and right-movers, the projection along the spin-1/2 quantiza-
tion axis, and particle-hole quantum numbers, among others (e.g., flavors). Label these internal
degrees of freedom by the Greek letter γ = 1, · · · ,M . Combine those two indices in a col-
lective index a ≡ (i, γ). Correspondingly, introduce the M × N pairs of creation ψ̂†

a(x) and
annihilation ψ̂a(x) field operators obeying the fermionic equal-time algebra

{
ψ̂a(x), ψ̂

†
a′(x

′)
}
= δa,a′ δ(x− x′) (5.1a)

with all other anticommutators vanishing and the collective labels a, a′ = 1, · · · ,M ×N . The
notation

Ψ̂†(x) ≡
(
ψ̂†
1(x) · · · ψ̂†

MN (x)
)
, Ψ̂(x) ≡




ψ̂1(x)
...

ψ̂MN (x)


 , (5.1b)

is used for the operator-valued row (Ψ̂†) and column (Ψ̂ ) vector fields. Assume that the many-
body quantum dynamics of the fermions supported by this array of wires is governed by the
Hamiltonian Ĥ , whereby interactions within each wire are dominant over interactions between
wires so that Ĥ may be represented as N coupled Luttinger liquids, each one of which is
composed of M interacting fermionic channels.
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By assumption, theM×N fermionic channels making up the array may thus be bosonized
as was explained in chapters 3 and 4. Within Abelian bosonization, [87] this is done by pos-
tulating first the MN ×MN matrix

K ≡ (Kaa′) (5.2a)

to be symmetric with integer-valued entries. Because an array of identical wires – each of
which having its quantum dynamics governed by that of a Luttinger liquid – is assumed, it is
natural to choose K to be reducible,

Kaa′ = δii′ Kγγ′ , γ, γ′ = 1, · · · ,M, i, i′ = 1, · · · , N. (5.2b)

A second MN ×MN matrix is then defined by

L ≡ (Laa′) (5.3a)

where
Laa′ ..= sgn(a− a′) (Kaa′ +QaQa′) , a, a′ = 1, · · · ,MN, (5.3b)

depends on the integer-valued charge vector Q ≡ (Qa) in addition to the matrix K ≡ (Laa′).
The MN compatibility conditions

(−1)Kaa = (−1)Qa , a = 1, · · · ,MN, (5.3c)

must hold. As we are after the effects of interactions between electrons, we chooseQa = 1 so
that

Laa′ ..= sgn(a− a′) (Kaa′ + 1) , a, a′ = 1, · · · ,MN. (5.3d)

Third, one verifies that, for any pair a, a′ = 1, · · · ,MN , the Hermitean fields φ̂a and φ̂a′ ,
defined by the Mandelstam formula

ψ̂a(x) ≡ : exp
(

+iKaa′ φ̂a′(x)
)

: (5.4a)

as they are, obey the bosonic equal-time algebra[
φ̂a(x), φ̂a′(x

′)
]

= −iπ
[
K−1

aa′ sgn(x− x′) +K−1
ab LbcK−1

ca′

]
. (5.4b)

Here, the notation : (· · · ) : stands for normal ordering of the argument (· · · ) and the summa-
tion convention over repeated indices is implied. In line with Eq. (5.1b), the notation

Φ̂T(x) ≡
(
φ̂1(x) · · · φ̂MN (x)

)
, Φ̂(x) ≡

 φ̂1(x)
...

φ̂MN (x)

 , (5.4c)

for the operator-valued row (i.e., Φ̂T) and column (i.e., Φ̂) vector fields is used. Periodic
boundary conditions along the x direction parallel to the wires are imposed by demanding
that

K Φ̂(x+ L) = K Φ̂(x) + 2πN , N ∈ ZMN . (5.4d)
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Equipped with Eqs. (5.2)–(5.4), the many-body Hamiltonian Ĥ for the MN interacting
fermions all carrying the same electric charge e and propagating on the array of wires is
decomposed additively into

Ĥ = ĤV + Ĥ{T } + Ĥ{Q}. (5.5a)

Hamiltonian
ĤV ..=

∫
dx
(
∂xΦ̂T

)
(t, x) V(x)

(
∂xΦ̂

)
(t, x), (5.5b)

even though quadratic in the bosonic field, encodes both local one-body terms as well as
contact many-body interactions between the M fermionic channels in any given wire from
the array through the block-diagonal, real-valued, and symmetric MN ×MN matrix

V(x) ..=
(
Vaa′(x)

)
≡
(
V(i,γ)(i′,γ′)(x)

)
= 11N ⊗

(
Vγγ′(x)

)
. (5.5c)

Hamiltonian

Ĥ{T } ..=
∫

dx
∑
T

hT (x)

2

(
e+iαT (x)

MN∏
a=1

ψ̂
Ta
a (t, x) + H.c.

)

=

∫
dx
∑
T
hT (x) : cos

(
T TK Φ̂(t, x) + αT (x)

)
: (5.5d)

is not quadratic in the bosonic fields. With the understanding that the operator-multiplication
of identical fermion fields at the same point x along the wire requires point splitting, and
with the short-hand notation ψ̂−1

a (x) ≡ ψ̂†a(x), Ĥ{T } is interpreted as a sum of all (possibly
many-body) tunnelings between the fermionic channels. The set {T } comprises here of all
integer-valued tunneling vectors

T ≡ (Ta) (5.5e)

obeying the condition

MN∑
a=1

Ta =


0 mod 2, for D, DIII, C, and CI,

0, otherwise.
(5.5f)

Moreover, each T from the set {T } is assigned the real-valued functions

hT (x) = h∗T (x) ≥ 0 (5.5g)

and
αT (x) = α∗T (x). (5.5h)

The condition (5.5f) ensures that these tunneling events preserve the parity of the total fermion
number for the superconducting symmetry classes (symmetry classes D, DIII, C, and CI in Ta-
ble 5.1), while they preserve the total fermion number for the non-superconducting symmetry
classes (symmetry classes A, AIII, AI, AII, BDI, and CII in Table 5.1). The integer
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q ..=
MN∑
a=1

|Ta |
2

(5.5i)

dictates that T encodes a q-body interaction in the fermion representation. Hamiltonian

Ĥ{Q} ..=
∫

dx
1

2π
A0(x)QT

(
∂xΦ̂

)
(t, x) (5.5j)

encodes the response to a static scalar potential A0 through the charge vector Q chosen to be

Q =
(
1 · · · 1

)T
(5.5k)

in units of the electron charge e.
Hamiltonian (5.5) and the commutators (5.4b) are form invariant under the transformation

Φ̂(t, x) =..W Φ̃(t, x), (5.6a)

Ṽ(x) ..= WT V(x)W, (5.6b)

K̃ ..= WTKW, (5.6c)

T̃ ..= W−1 T , (5.6d)

Q̃ ..= WTQ, (5.6e)

where theMN×MN integer-valued matrixW is assumed to be invertible, but not necessarily
orthogonal! Observe that the tunneling and charge vectors transform differently whenever
W−1 6=WT as they enter the Hamiltonian (5.5) with and without the matrixK, respectively. 1

Even if the deviation of the matrix W from the MN × MN unit matrix is small, the
relationship between the vertex operators

ψ̃ã(t, x) ≡ : exp
(

+i
(
K̃ Φ̃

)
ã

(t, x)
)

:

= : exp
(

+i
(
WTK Φ̂

)
ã

(t, x)
)

:, ã = 1, · · · ,MN,
(5.7)

and the vertex operators (5.4a) is non-perturbative. Performing a transformation of the form
(5.6) to interpret a specific choice of interactions encoded by the tunneling matrices {T } will
play an essential role below.

Because of the transformation laws (5.6c) and (5.6e), the dimensionless Hall conductivity
is invariant under the (not necessarily orthogonal) transformation (5.6). Indeed,

σH ..=
1

2π

(
QTK−1Q

)
=

1

2π

(
Q̃T

(
W−1W

)
K̃−1

(
W−1W

)T Q̃) (5.8a)

equals

σ̃H ..=
1

2π

(
Q̃T K̃−1 Q̃

)
. (5.8b)

In the sequel, we shall choose a non-orthogonal integer-valued W with |detW| = 1
when studying SRE phases of matter outside of the tenfold way, while we shall choose a non-
orthogonal integer-valuedW with |detW| 6= 1 in order to construct LRE phases of matter.

1Alternatively, K andQQT must transform in the same way because of the Klein factors (5.3b).
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5.3 Strategy for constructing topological phases

The many-body Hamiltonian ĤV + Ĥ{T } defined in Eq. (5.5) is to be chosen so that (i) it
belongs to any one of the ten symmetry classes from the tenfold way (with the action of
symmetries defined in Sec. 5.3.1) and (ii) all excitations in the bulk are gapped by a specific
choice of the tunneling vectors {T } entering Ĥ{T } (with the condition for a spectral gap given

in Sec. 5.3.3). The energy scales in Ĥ{T } are assumed sufficiently large compared to those in

ĤV so that it is ĤV that may be thought of as a perturbation of Ĥ{T } and not the converse.
It will be shown that, for five of the ten symmetry classes, there can be protected gapless

edge states because of locality and symmetry. Step (ii) for each of the five symmetry classes
supporting gapless edge states is represented pictorially as is shown in the fourth and fifth
columns of Table 5.1. In each symmetry class, topologically trivial states that do not support
protected gapless edge states in the tenfold classification can be constructed by gapping all
states in each individual wire from the array.

5.3.1 Representation of symmetries

The classification is based on the presence or the absence of the TRS and the PHS that are
represented by the antiunitary many-body operator Θ̂ and the unitary many-body operator
Π̂, respectively. Each of Θ̂ and Π̂ can exist in two varieties such that their single-particle
representations Θ and Π square to the identity operator up to the multiplicative factor ±1,

Θ2 = ±1, Π2 = ±1, (5.9)

respectively. By assumption, the set of all degrees of freedom in each given wire is invariant
under the actions of Θ̂ and Π̂. If so, the actions of Θ̂ and Π̂ on the fermionic fields can
be represented in two steps. First, two M ×M -dimensional matrix representations PΘ and
PΠ of the permutation group of M elements, which are combined into the block-diagonal
MN ×MN real-valued and orthogonal matrices

PΘ ..= 11N ⊗ PΘ, PΠ ..= 11N ⊗ PΠ, (5.10a)

where 11N is the N × N unit matrix and PΘ and PΠ represent products of transpositions so
that

PΘ = P−1
Θ = PT

Θ, PΠ = P−1
Π = PT

Π , (5.10b)

are introduced. Second, two column vectors IΘ ∈ ZM and IΠ ∈ ZM , which are combined
into the two column vectors

IΘ ..=

IΘ...
IΘ

 , IΠ ..=

IΠ...
IΠ

 , (5.10c)

and the MN ×MN diagonal matrices

DΘ ..= diag (IΘ), DΠ ..= diag (IΠ), (5.10d)

with the components of the vectors IΘ and IΠ as diagonal matrix elements, are introduced.
The vectors IΘ and IΠ are not chosen arbitrarily. Demand that the vectors (1 + PΘ) IΘ and
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(1 + PΠ) IΠ are made of even [for the +1 in Eq. (5.9)] and odd [for the −1 in Eq. (5.9)]
integer entries only, while

e+iπDΘ PΘ = ±PΘ e
+iπDΘ (5.10e)

and
e+iπDΠ PΠ = ±PΠ e

+iπDΠ , (5.10f)

in order to meet Θ2 = ±1 and Π2 = ±1, respectively. The operations of reversal of time and
interchanges of particles and holes are then represented by

Θ̂ Ψ̂ Θ̂−1 = e+iπDΘ PΘ Ψ̂, (5.10g)

Π̂ Ψ̂ Π̂−1 = e+iπDΠ PΠ Ψ̂, (5.10h)

for the fermions and

Θ̂ Φ̂ Θ̂−1 =PΘ Φ̂ + πK−1 IΘ, (5.10i)

Π̂ Φ̂ Π̂−1 =PΠ Φ̂ + πK−1 IΠ, (5.10j)

for the bosons. One verifies that Eq. (5.9) is fulfilled.
Hamiltonian (5.5) is TRS if

Θ̂ Ĥ Θ̂−1 = +Ĥ. (5.11a)

This condition is met if

PΘ V P
−1
Θ = +V, (5.11b)

PΘK P−1
Θ = −K, (5.11c)

hT (x) = h−PΘT
(x), (5.11d)

αT (x) = α−PΘT
(x)− π T T PΘ IΘ. (5.11e)

The Hamiltonian (5.5) is PHS if

Π̂ Ĥ Π̂−1 = +Ĥ. (5.12a)

This condition is met if

PΠ V P
−1
Π = +V, (5.12b)

PΠK P−1
Π = +K, (5.12c)

hT (x) = h+PΠT
(x), (5.12d)

αT (x) = αPΠT
(x) + π T T PΠ IΠ. (5.12e)

5.3.2 Particle-hole symmetry in interacting superconductors

The total number of fermions is a good quantum number in any metallic or insulating phase of
fermionic matter. This is not true anymore in the mean-field treatment of superconductivity.
In a superconductor, within a mean-field approximation, charge is conserved modulo two
as Cooper pairs can be created and annihilated. The existence of superconductors and the
phenomenological success of the mean-field approximation suggest that the conservation of
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the total fermion number operator should be relaxed down to its parity in a superconducting
phase of matter. If one only demands that the parity of the total fermion number is conserved,
one may then decompose any fermionic creation operator in the position basis into its real and
imaginary parts, thereby obtaining two Hermitean operators called Majorana operators. Any
Hermitean Hamiltonian that is build out of even powers of Majorana operators necessarily
preserves the parity of the total fermion number operator, but it might break the conservation
of the total fermion number. By definition, any such Hamiltonian belongs to the symmetry
class D.

The tool of Abelian bosonization allows to represent a fermion operator as a single ex-
ponential of a Bose field. In Abelian bosonization, a Majorana operator is the sum of two
exponentials, and this fact makes it cumbersome to apply Abelian bosonization for Majorana
operators. It is possible to circumvent this difficulty by representing any Hamiltonian from
the symmetry class D in terms of the components of Nambu-Gorkov spinors obeying a reality
condition. Indeed, one may double the dimensionality of the single-particle Hilbert space by
introducing Nambu-Gorkov spinors with the understanding that (i) a reality condition on the
Nambu-Gorkov spinors must hold within the physical subspace of the enlarged single-particle
Hilbert space and (ii) the dynamics dictated by the many-body Hamiltonian must be compati-
ble with this reality condition. The reality condition keeps track of the fact that there are many
ways to express an even polynomial of Majorana operators in terms of the components of a
Nambu-Gorkov spinor. The complication brought about by this redundancy is compensated
by the fact that it is straightforward to implement Abelian bosonization in the Nambu-Gorkov
representation.

To implement this particle-hole doubling, assign to every pair of fermionic operators ψ̂
and ψ̂† (whose indices have been omitted for simplicity) related to each other by the reality
condition

Π̂ ψ̂ Π̂† = ψ̂†, (5.13a)

the pair of bosonic field operators φ̂ and φ̂′ related by the reality condition

Π̂ φ̂ Π̂† = −φ̂′. (5.13b)

Invariance under this transformation has to be imposed on the (interacting) Hamiltonian in the
doubled (Nambu-Gorkov) representation. In addition to the PHS, it is also demanded, when
describing the superconducting symmetry classes, that the parity of the total fermion number
is conserved. This discrete global symmetry, the symmetry of the Hamiltonian under the re-
versal of sign of all fermion operators, becomes a continuous U(1) global symmetry that is
responsible for the conservation of the electric charge in all non-superconducting symmetry
classes. In this way, all nine symmetry classes from the tenfold way descend from the sym-
metry class D by imposing a composition of TRS, U(1) charge conservation, and the chiral
(sublattice) symmetry.

The combined effects of disorder and interactions in superconductors was studied in Refs [52,
30,31,32] starting from the Nambu-Gorkov formalism to derive a non-linear-sigma model for
the Goldstone modes relevant to the interplay between the physics of Anderson localization
and that of interactions. The stability of Majorana zero modes to interactions preserving the
particle-hole symmetry was studied in Ref. [36].
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5.3.3 Conditions for a spectral gap

Hamiltonian ĤV in the decomposition (5.5) has MN gapless modes. However, ĤV does not
commute with Ĥ{T } and the competition between ĤV and Ĥ{T } can gap some, if not all, the

gapless modes of ĤV . For example, a tunneling amplitude that scatters the right mover into
the left mover of each flavor in each wire will gap out the spectrum of ĤV .

A term in Ĥ{T } has the potential to gap out a gapless mode of ĤV if the condition (in the
Heisenberg representation) [87, 45]

∂x

[
T TK Φ̂(t, x) + αT (x)

]
= CT (x) (5.14)

holds for some time-independent real-valued functions CT (x) on the canonical momentum

(4π)−1K (∂xΦ̂)(t, x) (5.15)

that is conjugate to Φ̂(t, x), when applied to the ground state. The locking condition (5.14)
removes a pair of chiral bosonic modes with opposite chiralities from the gapless degrees of
freedom of the theory. However, not all scattering vectors T can simultaneously lead to such
a locking due to quantum fluctuations. The set of linear combinations {T TK Φ̂(t, x)} that
can satisfy the locking condition (5.14) simultaneously is labeled by the subset {T }locking

of all tunneling matrices {T } defined by Eqs. (5.5e) and (5.5f) obeying the Haldane crite-
rion (5.16) [87, 45]

T TKT = 0 (5.16a)

for any T ∈ {T }locking and
T TKT ′ = 0 (5.16b)

pairwise for any T 6= T ′ ∈ {T }locking.

5.4 Reproducing the tenfold way

The first goal is to apply the wire construction in order to reproduce the classification of non-
interacting topological insulators (symmetry classes A, AIII, AI, AII, BDI, and CII in Table
5.1) and superconductors (symmetry classes D, DIII, C,and CI in Table 5.1) in (2 + 1) dimen-
sions (see Table 5.1). [106, 107, 103, 58] In this section, the classification scheme is carried
out within the bosonized description of quantum wires. Here, the classification is restricted
to one-body tunneling terms, i.e., q = 1 in Eq. (5.5i), for the non-superconducting symmetry
classes, and to two-body tunneling terms, i.e., q = 2 in Eq. (5.5i), for the superconducting
symmetry classes. In Sec. 5.5, this construction is generalized to the cases q > 1 and q > 2 of
multi-particle tunnelings in the non-superconducting and superconducting symmetry classes,
respectively. The topological stability of edge modes will be an immediate consequence of
the observation that no symmetry-respecting local terms can be added to the models to be
constructed below.

Within the classification of non-interacting Hamiltonians, superconductors are nothing but
fermionic bilinears with a particle-hole symmetry. The physical interpretation of the degrees
of freedom as Bogoliubov quasiparticles is of no consequence to the analysis. In particular,
they still carry an effective conserved U(1) charge in the non-interacting description.
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5.4.1 Symmetry class A

SRE phases in the tenfold way

Topological insulators in symmetry class A can be realized without any symmetry aside
from the U(1) charge conservation. The wire construction starts from wires supporting spin-
less fermions, so that the minimal choice M = 2 only counts left- and right-moving degrees
of freedom. The K-matrix reads

K ..= diag (+1,−1). (5.17a)

The entry +1 of the K-matrix corresponds to a right mover. It is depicted by the symbol ⊗
in the first line of Table 5.1. The entry −1 of the K-matrix corresponds to a left mover. It is
depicted by the symbol � in the first line of Table 5.1. The operation for reversal of time in
any one of the N wires is represented by [one verifies that Eq. (5.10e) holds]

PΘ ..=
(

0 1
1 0

)
, IΘ ..=

(
0
0

)
. (5.17b)

Define Ĥ{T } by choosing (N − 1) scattering vectors, whereby, for any j = 1, · · · , (N − 1),

T (j)
(i,γ)

..= δi,j δγ,2 − δi−1,j δγ,1 (5.18a)

with i = 1, · · · , N and γ = 1, 2. In other words,

T (j) ..= (0, 0| · · · |0,+1| − 1, 0| · · · |0, 0)T (5.18b)

for j = 1, · · · , N − 1. Intent on helping with the interpretation of the tunneling vectors, the
|’s in Eq. (5.18b) is used to compartmentalize the elements within a given wire. Henceforth,
there are M = 2 vector components within each pair of |’s that encode the M = 2 degrees of
freedom within a given wire. The jth scattering vector (5.18b) labels a one-body interaction in
the fermion representation that fulfills Eq. (5.5f) and breaks TRS, since the scattering vector
(0,+1)T is mapped into the scattering vector (+1, 0)T by the permutation PΘ that represents
reversal of time in a wire by exchanging right- with left-movers. For any j = 1, · · · , (N − 1),
introduce the amplitude

hT (j)(x) ≥ 0 (5.18c)

and the phase
αT (j)(x) ∈ R (5.18d)

according to Eqs. (5.11d) and (5.11e), respectively. The choices for the amplitude (5.18c)
and the phase (5.18d) are arbitrary. In particular the amplitude (5.18c) can be chosen to be
sufficiently large so that it is ĤV that may be thought of as a perturbation of Ĥ{T } and not the
converse.

One verifies that all (N−1) scattering vectors (5.18a) satisfy the Haldane criterion (5.16),
i.e.,

T (i)TKT (j) = 0, i, j = 1, · · · , N − 1. (5.19)

Correspondingly, the term Ĥ{T } gaps out 2(N − 1) of the 2N gapless modes of ĤV . Two
modes of opposite chirality that propagate along the first and last wire, respectively, remain in
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the low energy sector of the theory. These edge states are localized on wire i = 1 and i = N ,
respectively, for their overlaps with the gapped states from the bulk decay exponentially fast as
a function of the distance away from the first and end wires. The energy splitting between the
edge state localized on wire i = 1 and the one localized on wire i = N that is brought about
by the bulk states vanishes exponentially fast with increasingN . Two gapless edge states with
opposite chiralities emerge in the two-dimensional limit N →∞.

At energies much lower than the bulk gap, the effective K-matrix for the edge modes is

Keff ..= diag(+1, 0|0, 0| · · · |0, 0|0,−1). (5.20)

Here, Keff follows from replacing the entries in the 2N × 2N K matrix for all gapped modes
by 0. The pictorial representation of the topological phase in the symmetry class A with one
chiral edge state per end wire through the wire construction is shown on the first row and
fourth column of Table 5.1. The generalization to an arbitrary number n of gapless edge states
sharing a given chirality on the first wire that is opposite to that of the last wire is the following.
Enlarge M = 2 to M = 2n by making n identical copies of the model depicted in the first
row and fourth column of Table 5.1. The stability of the n chiral gapless edge states in wire
1 and wire N is guaranteed because back-scattering among these gapless edges state is not
allowed kinematically within wire 1 or within wire N , while back-scattering across the bulk
is exponentially suppressed for N large by locality and the gap in the bulk. The number of
robust gapless edge states of a given chirality is thus integer. This is the reason why Z is found
in the third column on the first line of Table 5.1.

SRE phases beyond the tenfold way

It is imperative to ask whether the phases constructed so far exhaust all possible SRE
phases in the symmetry class A. By demanding that one-body interactions are dominant over
many-body interactions, all phases from the (exhaustive) classification for non-interacting
fermions in class A and only those were constructed. In these phases, the same topological
invariant controls the Hall and the thermal conductivities. However, it was observed that in-
teracting fermion systems can host additional SRE phases in the symmetry class A where
this connection is lost. [73] These phases are characterized by an edge that includes charge-
neutral chiral modes. While such modes contribute to the quantized energy transport (i.e., the
thermal Hall conductivity), they do not contribute to the quantized charge transport (i.e., the
charge Hall conductivity). By considering the thermal and charge Hall conductivity as two
independent quantized topological responses, this enlarges the classification of SPT phases in
the symmetry class A to Z× Z.

Starting from identical fermions of charge e, an explicit model for an array of wires will
be constructed that stabilizes a SRE phase of matter in the symmetry class A carrying a non-
vanishing Hall conductivity but a vanishing thermal Hall conductivity. In order to build a
wire-construction of such a strongly interacting SRE phase in the symmetry class A, three
spinless electronic wires are grouped into one unit cell, i.e.,

K ..= diag(+1,−1,+1,−1,+1,−1). (5.21a)

It will be useful to arrange the charges Qγ = 1 measured in units of the electron charge e for
each of the modes φ̂γ , γ = 1, · · · ,M , into the vector
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Q = (1, 1, 1, 1, 1, 1)T. (5.21b)

The physical meaning of the tunneling vectors (interactions) to be defined below is most
transparent when employing the following linear transformation on the bosonic field variables

Φ̂(x) =..W Φ̃(x), (5.22a)

K̃ ..= WTKW, (5.22b)

T̃ ..= W−1 T , (5.22c)

Q̃ ..= WTQ, (5.22d)

where W is a MN ×MN block-diagonal matrix with the non-orthogonal block W having
integer entries and the determinant one in magnitude. The transformation W and its inverse
W−1 are given by

W ..=


0 −1 −1 0 0 0

+1 −1 −1 0 0 0
+1 0 −1 0 0 0
0 0 0 −1 0 +1
0 0 0 −1 −1 +1
0 0 0 −1 −1 0

 , W−1 ..=


−1 +1 0 0 0 0
0 −1 +1 0 0 0
−1 +1 −1 0 0 0
0 0 0 −1 +1 −1
0 0 0 +1 −1 0
0 0 0 0 +1 −1

 , (5.23)

respectively. It brings K to the form

K̃ ..=


0 +1 0 0 0 0

+1 0 0 0 0 0
0 0 +1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

 . (5.24)

As can be read off from Eq. (5.4b), the parity of Kγγ determines the self-statistics of
particles of type γ = 1, · · · , N . As Eq. (5.4b) is form invariant under the transformation
(5.22), one concludes that, with the choice (5.23), the transformed modes γ = 1, 2 as well
as the modes γ = 5, 6 are pairs of bosonic degrees of freedom, while the third and fourth
mode remain fermionic. Furthermore, the charges transported by the transformed modes φ̃γ
are given by

Q̃ = WTQ = (+2,−2,−3,−3,−2,+2)T. (5.25)

Define the charge-conserving tunneling vectors (j = 1, · · · , N − 1)

T̃ (j)
1

..= (0, 0, 0, 0, 0, 0| · · · |0, 0,+1,−1, 0, 0| · · · |0, 0, 0, 0, 0, 0)T,

T̃ (j)
2

..= (0, 0, 0, 0, 0, 0| · · · |0, 0, 0, 0,+1, 0|0,−1, 0, 0, 0, 0| · · · |0, 0, 0, 0, 0, 0)T,

T̃ (j)
3

..= (0, 0, 0, 0, 0, 0| · · · |0, 0, 0, 0, 0,+1| − 1, 0, 0, 0, 0, 0| · · · |0, 0, 0, 0, 0, 0)T.

(5.26)

In the original basis, these three families of tunneling vectors are of order 3, 2, and 2, respec-
tively. They are explicitly given by
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T (j)
1

..= (0, 0, 0, 0, 0, 0| · · · | − 1,−1,−1,+1,+1,+1| · · · |0, 0, 0, 0, 0, 0)T,

T (j)
2

..= (0, 0, 0, 0, 0, 0| · · · |0, 0, 0, 0,−1,−1|+ 1,+1, 0, 0, 0, 0| · · · |0, 0, 0, 0, 0, 0)T,

T (j)
3

..= (0, 0, 0, 0, 0, 0| · · · |0, 0, 0,+1,+1, 0|0,−1,−1, 0, 0, 0| · · · |0, 0, 0, 0, 0, 0)T.

(5.27)

The tunneling vectors (5.26) gap all modes in the bulk and the remaining gapless edge
modes on the left edge are

K̃eff,left =

(
0 1
1 0

)
, Q̃eff,left =

(
+2
−2

)
. (5.28)

The only charge-conserving tunneling vector that could gap out this effective edge theory,
T̃ = (1, 1)T, is not compatible with Haldane’s criterion (5.16). Thus, the edge theory (5.28) is
stable against charge conserving perturbations. The Hall conductivity supported by this edge
theory is given by

Q̃T
eff,left K̃

−1
eff,left Q̃eff,left = −8 (5.29)

in units of e2/h. This is the minimal Hall conductivity of a SRE phase of bosons, if each
boson is interpreted as a pair of electrons carrying the electronic charge 2e. [73] On the other
hand, the edge theory (5.28) supports two modes with opposite chiralities, for the symmetric
matrix K̃eff,left has the pair of eigenvalues ±1. Thus, the net energy transported along the left
edge, and with it the thermal Hall conductivity, vanishes.

5.4.2 Symmetry class AII

Topological insulators in symmetry class AII can be realized by demanding that U(1) charge
conservation holds and that TRS with Θ2 = −1 holds. The wire construction starts from wires
supporting spin-1/2 fermions because Θ2 = −1, so that the minimal choice M = 4 counts
two pairs of Kramers degenerate left- and right-moving degrees of freedom carrying opposite
spin projections on the spin quantization axis, i.e., two pairs of Kramers degenerate helical
modes. The K-matrix reads

K ..= diag (+1,−1,−1,+1). (5.30a)

The entries in the K-matrix represent, from left to right, a right-moving particle with spin
up, a left-moving particle with spin down, a left-moving particle with spin up, and a right-
moving particle with spin down. The operation for reversal of time in any one of the N wires
is represented by [one verifies that Eq. (5.10e) holds]

PΘ ..=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , IΘ ..=


0
1
0
1

 . (5.30b)

Define ĤV by choosing any symmetric 4× 4 matrix V that obeys

V = PΘ V P
−1
Θ . (5.30c)

Define Ĥ{TSO}
by choosing 2(N − 1) scattering vectors as follows. For any j = 1, · · · , (N −

1), introduce the pair of scattering vectors
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T (j)
SO

..= (0, 0, 0, 0| · · · |0, 0,+1, 0| − 1, 0, 0, 0| · · · |0, 0, 0, 0)T (5.31a)

and
T (j)

SO ..= −PΘ T (j)
SO . (5.31b)

The scattering vector (5.31a) labels a one-body interaction in the fermion representation that
fulfills Eq. (5.5f). It scatters a left mover with spin up from wire j into a right mover with spin
up in wire j + 1. For any j = 1, · · · , (N − 1), introduce the pair of amplitudes

h
T (j)

SO

(x) = h
T (j)

SO

(x) ≥ 0 (5.31c)

and the pair of phases
α
T (j)

SO

(x) = α
T (j)

SO

(x) ∈ R (5.31d)

according to Eqs. (5.11d) and (5.11e), respectively. The choices for the amplitude (5.31c) and
the phase (5.31d) are arbitrary. The subscript SO refers to the intrinsic spin-orbit coupling.
The rational for using it shall be shortly explained.

One verifies that all 2(N − 1) scattering vectors (5.30c) and (5.31a) satisfy the Haldane
criterion (5.16), i.e.,

T (i)T
SO KT (j)

SO = T (i)T
SO KT

(j)

SO = T (i)T
SO KT (j)

SO = 0, (5.32)

for i, j = 1, · · · , N − 1. Correspondingly, the term Ĥ{TSO}
gaps out 4(N − 1) of the 4N

gapless modes of ĤV . Two pairs of Kramers degenerate helical edge states that propagate
along the first and last wire, respectively, remain in the low energy sector of the theory. These
edge states are localized on wire i = 1 and i = N , respectively, for their overlaps with the
gapped states from the bulk decay exponentially fast as a function of the distance away from
the first and end wires. The energy splitting between the edge state localized on wire i = 1 and
wire i = N brought about by the bulk states vanishes exponentially fast with increasing N .
Two pairs of gapless Kramers degenerate helical edge states emerge in the two-dimensional
limit N →∞.

At energies much lower than the bulk gap, the effective K-matrix for the two pairs of
helical edge modes is

Keff ..= diag(+1,−1, 0, 0|0, 0, 0, 0| · · · |0, 0, 0, 0|0, 0,−1,+1). (5.33)

Here, Keff follows from replacing the entries in the 4N × 4N K matrix for all gapped modes
by 0. It will be shown that the effective scattering vector

Teff ..= (+1,−1, 0, 0|0, 0, 0, 0| · · · )T, (5.34)

with the potential to gap out the pair of Kramers degenerate helical edge modes on wire i = 1
since it fulfills the Haldane criterion (5.16), is not allowed by TRS. 2 On the one hand, Teff

maps to itself under reversal of time,

2Even integer multiples of Teff would gap the edge states, but they must also be discarded as explained in Ref. [87].
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Teff = −PΘ Teff . (5.35)

On the other hand,
T T

eff PΘ IΘ = −1. (5.36)

Therefore, the condition (5.11e) for Teff to be a TRS perturbation is not met, for the phase
αTeff

(x) associated to Teff then obeys

αTeff
(x) = αTeff

(x)− π, (5.37)

a condition that cannot be satisfied.
Had a TRS with Θ = +1 been imposed instead of Θ = −1 as is suited for the symmetry

class AI that describes spinless fermions with TRS, one would only need to replace IΘ in
Eq. (5.30b) by the null vector. If so, the scattering vector (5.34) is compatible with TRS since
the condition (5.11e) for TRS then becomes

αTeff
(x) = αTeff

(x) (5.38)

instead of Eq. (5.37). This is the reason why symmetry class AI is always topologically trivial
in two-dimensional space from the point of view of the wire construction.

Note also that had one not insisted on the condition of charge neutrality (5.5f), the tunnel-
ing vector

T ′eff ..= (+1,+1, 0, 0|0, 0, 0, 0| · · · )T, (5.39)

that satisfies the Haldane criterion and is compatible with TRS could gap out the Kramers
degenerate pair of helical edge states.

To address the question of what happens if M = 4 is changed to M = 4n with n any
strictly positive integer in each wire from the array, consider, without loss of generality, the
case of n = 2. To this end, it suffices to repeat all the steps that lead to Eq. (5.34), except for
the change

Keff ..= diag (+1,−1, 0, 0; +1,−1, 0, 0|0, 0, 0, 0; 0, 0, 0, 0|
· · · |0, 0, 0, 0; 0, 0, 0, 0|0, 0,−1,+1; 0, 0,−1,+1).

(5.40)

One verifies that the scattering vectors

T ′eff ..= (+1, 0, 0, 0; 0,−1, 0, 0|0, 0, 0, 0; 0, 0, 0, 0| · · · )T (5.41)

and
T ′′eff ..= (0,−1, 0, 0; +1, 0, 0, 0|0, 0, 0, 0; 0, 0, 0, 0| · · · )T (5.42)

are compatible with the condition that TRS holds in that the pair is a closed set under reversal
of time,

T ′eff = −PΘ T ′′eff . (5.43)

One verifies that these scattering vectors fulfill the Haldane criterion (5.16). Consequently,
inclusion in Ĥ{TSO}

of the two cosine potentials with T ′eff and T ′′eff entering in their arguments,
respectively, gaps out the pair of Kramers degenerate helical modes on wire i = 1. The same
treatment of the wire i = N leads to the conclusion that TRS does not protect the gapless
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pairs of Kramers degenerate edge states from perturbations when n = 2. The generalization
to M = 4n channels is that it is only when n is odd that a pair of Kramers degenerate helical
edge modes is robust to the most generic Ĥ{TSO}

of the form depicted in the fourth column
on line 3 of Table 5.1. Since it is the parity of n in the number M = 4n of channels per wire
that matters for the stability of the Kramers degenerate helical edge states, the group of two
integers Z2 under addition modulo 2 in the third column on line 3 of Table 5.1 is used.

If conservation of the projection of the spin-1/2 quantum number on the quantization axis
was imposed, then processes by which a spin is flipped must be precluded from all scattering
vectors. In particular, the scattering vectors (5.41) and (5.42) are not admissible anymore. By
imposing theU(1) residual symmetry of the full SU(2) symmetry group for a spin-1/2 degree
of freedom, the group of integers Z under the addition that encodes the topological stability in
the quantum spin Hall effect (QSHE) is recovered.

The discussion of the symmetry class AII is closed by justifying the interpretation of the
index SO as an abbreviation for the intrinsic spin-orbit coupling. To this end, introduce a set
of (N − 1) pairs of scattering vectors

T (j)
R

..= (0, 0, 0, 0| · · · |0,+1, 0, 0| − 1, 0, 0, 0| · · · |0, 0, 0, 0)T (5.44a)

and
T (j)

R ..= −PΘ T (j)
R (5.44b)

for j = 1, · · · , N − 1. The scattering vector (5.44a) labels a one-body interaction in the
fermion representation that fulfills Eq. (5.5f). The index R is an acronym for Rashba as it
describes a backward scattering process by which a left mover with spin down from wire
j is scattered into a right mover with spin up on wire j + 1 and conversely. For any j =
1, · · · , (N − 1), introduce the pair of amplitudes

h
T (j)

R

(x) = h
T (j)

R

(x) ≥ 0 (5.44c)

and the pair of phases
α
T (j)

R

(x) = α
T (j)

R

(x) + π ∈ R (5.44d)

according to Eqs. (5.11d) and (5.11e), respectively. In contrast to the intrinsic spin-orbit scat-
tering vectors, the Rashba scattering vectors (5.44a) fail to meet the Haldane criterion (5.16)
as

T (j)T
R KT (j+1)

R = −1, j = 1, · · · , N − 1. (5.45)

Hence, the Rashba scattering processes fail to open a gap in the bulk, as is expected of a
Rashba coupling in a two-dimensional electron gas. On the other hand, the intrinsic spin-orbit
coupling can lead to a phase with a gap in the bulk that supports the spin quantum Hall effect
in a two-dimensional electron gas.

5.4.3 Symmetry class D

The simplest example among the topological superconductors can be found in the symmetry
class D that is defined by the presence of a PHS with Π2 = +1 and the absence of TRS.
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With the understanding of PHS as discussed in Sec. 5.3.2, a representative phase in class D
is constructed from identical wires supporting right- and left-moving spinless fermions, each
of which carry a particle or a hole label, i.e., M = 4. The K-matrix reads

K ..= diag(+1,−1,−1,+1). (5.46a)

The entries in theK-matrix represent, from left to right, a right-moving particle, a left-moving
particle, a left-moving hole, and a right-moving hole. The operation for the exchange of par-
ticles and holes in any one of the N wires is represented by [one verifies that Eq. (5.10f)
holds]

PΠ ..=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , IΠ ..=


0
0
0
0

 . (5.46b)

Define ĤV by choosing any symmetric 4× 4 matrix V that obeys

V = +PΠ V P
−1
Π . (5.46c)

Define Ĥ{T } by choosing 2N − 1 scattering vectors as follows. For any wire j = 1, · · · , N ,
introduce the scattering vector

T (j) ..= (0, 0, 0, 0| · · · |+ 1,−1,−1,+1| · · · |0, 0, 0, 0)T. (5.47a)

Between any pair of neighboring wires introduce the scattering vector

T (j) ..=

(0, 0, 0, 0| · · · |0,+1,−1, 0| − 1, 0, 0,+1| · · · |0, 0, 0, 0)T,
(5.47b)

for j = 1, · · · , (N − 1). Observe that both T (j) and T (j)
are eigenvectors of the particle-hole

transformation in that

PΠ T (j) = +T (j), PΠ T
(j)

= −T (j)
. (5.47c)

Thus, to comply with PHS, demand that the phases

α
T (j)(x) = 0, (5.47d)

while αT (j)(x) are unrestricted. Similarly, the amplitudes hT (j)(x) and h
T (j)(x) can take

arbitrary real values.
One verifies that the set of scattering vectors defined by Eqs. (5.47a) and (5.47b) satisfies

the Haldane criterion. Correspondingly, the term Ĥ{T } gaps out (4N − 2) of the 4N gapless

modes of ĤV . Furthermore, one identifies with

T (0)
= (−1, 0, 0,+1|0, 0, 0, 0| · · · |0, 0, 0, 0|0,+1,−1, 0)T (5.48)

a unique (up to an integer multiplicative factor) scattering vector that satisfies the Haldane
criterion with all existing scattering vectors Eqs. (5.47a) and (5.47b) and could thus potentially
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gap out the remaining pair of modes. However, the tunneling T (0)
is non-local for it connects

the two edges of the system when open boundary conditions are chosen. One thus concludes
that the two remaining modes are exponentially localized near wire i = 1 and wire i = N ,
respectively, and propagate with opposite chirality.

To give a physical interpretation of the resulting topological (edge) theory in this wire
construction, one has to keep in mind that the degrees of freedom were artificially doubled.
One finds, in this doubled theory, a single chiral boson (with chiral central charge c = 1). To
interpret it as the edge of a chiral (px + ipy) superconductor, the reality condition is imposed
to obtain a single chiral Majorana mode with chiral central charge c = 1/2.

The pictorial representation of the topological phase in the symmetry class D through the
wire construction is shown on the fifth row of Table 5.1. The generalization to an arbitrary
number n of gapless chiral edge modes is analogous to the case discussed in symmetry class
A. The number of robust gapless chiral edge states of a given chirality is thus integer. This
is the reason why the group of integers Z is found in the third column on the fifth line of
Table 5.1.

5.4.4 Symmetry classes DIII and C

The remaining two topological nontrivial superconducting classes DIII (TRS with Θ2 = −1
and PHS with Π2 = +1) and C (PHS with Π2 = −1) involve spin-1/2 fermions. Each wire
thus features no less than M = 8 internal degrees of freedom corresponding to the spin-
1/2, chirality, and particle/hole indices. The construction is very similar to the cases already
presented. Details are relegated to Ref. [86].

The scattering vectors that are needed to gap out the bulk for each class of class DIII and
C are represented pictorially in the fourth column on lines 4 and 9 of Table 5.1.

5.4.5 Summary

An explicit construction was provided by way of an array of wires supporting fermions that
realizes all five insulating and superconducting topological phases of matter with a nondegen-
erate ground state in two-dimensional space according to the tenfold classification of band
insulators and superconductors. The topological protection of edge modes in the bosonic for-
mulation follows from imposing the Haldane criterion (5.16) along with the appropriate sym-
metry constraints. It remains to extend the wire construction to allow many-body tunneling
processes that delivers fractionalized phases with degenerate ground states.

5.5 Fractionalized phases

The power of the wire construction goes much beyond what was used in Sec. 5.4 to repro-
duce the classification of the SRE phases. It is possible to construct models for interacting
phases of matter with intrinsic topological order and fractionalized excitations by relaxing
the condition on the tunnelings between wires that they be of the one-body type. While these
phases are more complex, the principles for constructing the models and proving the stabil-
ity of edge modes remain the same: All allowed tunneling vectors have to obey the Haldane
criterion (5.16) and the respective symmetries.



74 Construction of two-dimensional topological phases from coupled wires

5.5.1 Symmetry class A: Fractional quantum Hall states

First, the models of quantum wires that are topologically equivalent to the Laughlin state in
the FQHE are reviewed, [68] following the construction in Ref. [56] for Abelian fractional
quantum Hall states. Here, the choice of scattering vectors is determined by the Haldane
criterion (5.16) and at the same time prepare the grounds for the construction of fractional
topological insulators with TRS in Sec. 5.5.2.

Needed are the fermionic Laughlin states indexed by the positive odd integer m. [68] (By
the same method, other fractional quantum Hall phases from the Abelian hierarchy could be
constructed. [56]) The elementary degrees of freedom in each wire are spinless right- and
left-moving fermions with the K-matrix

K = diag (+1,−1), (5.49a)

as is done in Eq. (5.17a). Reversal of time is defined through PΘ and IΘ given in Eq (5.17b).
Instead of Eq (5.18), the scattering vectors that describe the interactions between the wires are
now defined by

T (j) ..=
(
0, 0

∣∣· · · ∣∣m+,−m−
∣∣m−,−m+

∣∣ · · · ∣∣ 0, 0)T , (5.49b)

for any j = 1, · · · , N − 1, where m± = (m ± 1)/2 [see Table 5.1 for an illustration of the
scattering process].

For any j = 1, · · · , N − 1, the scattering (tunneling) vectors (5.49b) preserve the conser-
vation of the total fermion number in that they obey Eq. (5.5f), and they encode a tunneling
interaction of order q = m, with q defined in Eq. (5.5i). As a set, all tunneling interactions
satisfy the Haldane criterion (5.16), for

T (i)TKT (j) = 0, i, j = 1, · · · , N − 1. (5.50)

Note that the choice of tunneling vector in Eq. (5.49b) is unique (up to an integer multiplicative
factor) if one insists on charge conservation, compliance with the Haldane criterion (5.16), and
only includes scattering between neighboring wires.

The bare counting of tunneling vectors shows that the wire model gaps out all but two
modes. However, one still needs to show that the remaining two modes (i) live on the edge, (ii)
cannot be gapped out by other (local) scattering vectors and (iii) are made out of fractionalized
quasiparticles.

To address (i) and (ii), note that the remaining two modes can be gapped out by a unique
(up to an integer multiplicative factor) charge-conserving scattering vector that satisfies the
Haldane criterion (5.16) with all existing scatterings, namely

T (0) ..=
(
m−,−m+

∣∣ 0, 0∣∣ · · · ∣∣0, 0 ∣∣m+,−m−
)T
. (5.51)

Connecting the opposite ends of the array of wires through the tunneling T (0) is not an ad-
missible perturbation, for it violates locality in the two-dimensional thermodynamic limit
N → ∞. Had periodic boundary conditions corresponding to a cylinder geometry (i.e., a
tube as in Fig. 5.1) by which the first and last wire are nearest neighbors been chosen, T (0)

would be admissible. Hence, the gapless nature of the remaining modes when open boundary
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conditions are chosen depends on the boundary conditions. These gapless modes have support
near the boundary only and are topologically protected.

Applying the transformation (5.6) with

W ..=
(
−m− m+

m+ −m−

)
, detW = −m, W−1 =

1

m

(
m− m+

m+ m−

)
, (5.52a)

transforms the matrix K into

K̃ =WTKW =

(
−m− m+

m+ −m−

)(
+1 0
0 −1

)(
−m− m+

m+ −m−

)
=

(
−m 0

0 +m

)
. (5.52b)

As its determinant is not unity, the linear transformation (5.52a) changes the compactifica-
tion radius of the new field Φ̃(x) relative to the compactification radius of the old field Φ̂(x)
accordingly. Finally, the transformed tunneling and charge vectors are given by

T̃ (j) =W−1 T (j) = (0, 0| · · · |0, 0|0,+1| − 1, 0|0, 0| · · · |0, 0)T 6= T (j), (5.52c)

Q̃ =WTQ = (1, 1| · · · |1, 1|1, 1|1, 1|1, 1| · · · |1, 1)T = Q, (5.52d)

respectively, whereW ..= 11N ⊗W and j = 1, · · · , N − 1. Contrary to the tunneling vectors,
the charge vector is invariant under the non-orthogonal linear transformation (5.52a).

In view of Eq. (5.52c), the remaining effective edge theory is described by

K̃eff = diag (−m, 0|0, 0| · · · |0, 0|0,+m). (5.53)

This is a chiral theory at each edge that cannot be gapped by local perturbations. In combina-
tion with Eq. (5.52d), Eq. (5.53) is precisely the edge theory for anyons with statistical angle
1/m and charge e/m, [128] where e is the charge of the original fermions.

5.5.2 Symmetry Class AII: Fractional topological insulators

Having understood how fractionalized quasiparticles emerge out of a wire construction, it is
imperative to ask what other phases can be obtained when symmetries are imposed on the
topologically ordered phase. Such symmetry enriched topological phases have been classified
by methods of group cohomology. [17] Here, the case of TRS with Θ2 = −1 will provide an
example for how the wire construction can be used to build up an intuition for these phases
and to study the stability of their edge theory.

The elementary degrees of freedom in each wire are spin-1/2 right- and left-moving
fermions with the K-matrix

K ..= diag (+1,−1,−1,+1), (5.54a)

as is done in Eq. (5.30a). Reversal of time is defined through PΘ and IΘ given in Eq (5.30b).
Instead of Eq (5.31a), the scattering vectors that describe the interactions between the wires
are now defined by

T (j) ..=
(
0, 0, 0, 0

∣∣· · · ∣∣−m−, 0,+m+, 0
∣∣−m+, 0,+m−, 0

∣∣ · · · ∣∣ 0, 0, 0, 0)T (5.54b)

and
T (j) ..= −PΘ T (j), (5.54c)

for any j = 1, · · · , N − 1, m a positive odd integer, and m± = (m± 1)/2.
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For any j = 1, · · · , N−1, the scattering (tunneling) vectors (5.54b ) preserve conservation
of the total fermion number in that they obey Eq. (5.5f), and they encode a tunneling interac-
tion of order q = m with q defined in Eq. (5.5i). They also satisfy the Haldane criterion (5.16)
as a set [see Table 5.1 for an illustration of the scattering process].

Applying the transformation (5.6) with

W ..=


−m− 0 m+ 0

0 −m− 0 m+

m+ 0 −m− 0
0 m+ 0 −m−

 (5.55)

to the bosonic fields, leaves the representation of time-reversal invariant

W−1 PΘW = PΘ, (5.56)

while casting the theory in a new form with the transformed matrix K̃ given by

K̃ = diag (−m,+m,+m,−m), (5.57)

and, for any j = 1, · · · , N −1, with the transformed pair of scattering vectors (T̃ j , T̃
j

) given
by

T̃ (j) = (0, 0, 0, 0| · · · |+ 1, 0, 0, 0|0, 0,−1, 0| · · · |0, 0, 0, 0)T (5.58)

and

T̃
(j)

= (0, 0, 0, 0| · · · |0,−1, 0, 0|0, 0, 0,+1| · · · |0, 0, 0, 0)T. (5.59)

When these scattering vectors have gapped out all modes in the bulk, the effective edge theory
is described by

K̃eff = diag (0, 0,+m,−m|0, 0, 0, 0| · · · |0, 0, 0, 0| −m,+m, 0, 0). (5.60)

This effective K-matrix describes a single Kramers degenerate pair of 1/m anyons propagat-
ing along the first wire and another single Kramers degenerate pair of 1/m anyons propagating
along the last wire. Their robustness to local perturbations is guaranteed by TRS.

Unlike in the tenfold way, the correspondence between the bulk topological phase and
the edge theories of LRE phases is not one-to-one. For example, while a bulk topological
LRE phase supports fractionalized topological excitations in the bulk, its edge modes may
be gapped out by symmetry-allowed perturbations. For the phases discussed in this section,
namely the Abelian and TRS fractional topological insulators, it was shown in Refs. [87]
and [70] that the edge, consisting of Kramers degenerate pairs of edge modes, supports at
most one stable Kramers degenerate pair of delocalized quasiparticles that are stable against
disorder. (Note that this does not preclude the richer edge physics of non-Abelian TRS frac-
tional topological insulators. [105])

It turns out that the wire constructions with edge modes given by Eq. (5.60) exhaust all
stable edge theories of Abelian topological phases which are protected by TRS with Θ2 = −1
alone.
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Let the single protected Kramers degenerate pair be characterized by the linear combina-
tion of bosonic fields

ϕ̂(x) ..= T TK′ Φ̂(x) (5.61)

and its time-reversed partner
ˆ̄ϕ(x) ..= T TK′ Φ̂(x), (5.62)

where the tunneling vector T was constructed from the microscopic information from the
theory in Ref. [87] and K′ is the K-matrix of a TRS bulk Chern-Simons theory from the
theory in Ref. [87]. [In other words, the theory encoded by K′ has nothing to do a priory with
the array of quantum wires defined by Eq. (5.54).] The Kramers degenerate pair of modes
(ϕ̂, ˆ̄ϕ) is stable against TRS perturbations supported on a single edge if and only if

1

2
|T TQ| (5.63)

is an odd number. Here,Q is the charge vector with integer entries that determines the coupling
of the different modes to the electromagnetic field. Provided (ϕ̂, ˆ̄ϕ) is stable, its equal-time
commutation relations follow from Eq. (5.4b) as

[ϕ̂(x), ϕ̂(x′)] = − iπ
(
T TK′ T sgn(x− x′) + T T LT

)
, (5.64a)[

ˆ̄ϕ(x), ˆ̄ϕ(x′)
]

= − iπ
(
−T TK′ T sgn(x− x′) + T T LT

)
, (5.64b)

where the fact that K′ anticommutes with PΘ according to Eq. (5.11c) was used. By the same
token, one can show that the fields ϕ̂ and ˆ̄ϕ commute, for

T TK′ T = T T PΘK′ T = −T TK′ T = 0. (5.65)

One concludes that the effective edge theory for any Abelian TRS fractional topological insu-
lator build from fermions has the effective form of one Kramers degenerate pairs

Keff =

(
T TK′T 0

0 −T TK′T

)
, (5.66)

and is thus entirely defined by the single integer

m ..= T TK′T . (5.67)

With the scattering vectors (5.54c) An explicit wire construction for each of these cases was
given, thus exhausting all possible stable edge theories for Abelian fractional topological in-
sulators.

For each positive odd integer m, the fractionalized mode has a Z2 character. It can have
either one or none stable Kramers degenerate pair of m quasiparticles.

5.5.3 Symmetry Class D: Fractional superconductors

In Sec. 5.5.2 TRS was imposed on the wire construction of fractional quantum Hall states
from which the fractional topological insulators in symmetry class AII followed. In complete
analogy, one may impose PHS with Π2 = +1 on the wire construction of a fractional quantum



78 Construction of two-dimensional topological phases from coupled wires

Hall state, thereby promoting it to symmetry class D. Physically, there follows a model for a
superconductor with “fractionalized” Majorana fermions or Bogoliubov quasiparticles.

Lately, interest in this direction has been revived by the investigation of exotic quantum
dimensions of twist defects embedded in an Abelian fractional quantum Hall liquid, [8, 7,
6] along with heterostructures of superconductors combined with fractional quantum Hall
effect, [72,120,21] or fractional topological insulators. [20] Furthermore, the Kitaev quantum
wire has been generalized to Zn clock models hosting parafermionic edge modes, [59, 27]
along with efforts to transcend the Read-Rezayi quantum Hall state [98] to spin liquids [38,37]
and superconductors, [79] all of which exhibit parafermionic quasiparticles.

As in the classification of non-interacting insulators, the Bogoliubov quasiparticles are
treated with Abelian bosonization as if they were Dirac fermions. The fractional phase is
driven by interactions among the Bogoliubov quasiparticles.

The elementary degrees of freedom in each wire are spinless right- and left-moving fermions
and holes as was defined for symmetry class D in Eqs. (5.46a)-(5.46c). Construct the frac-
tional topological insulator using the set of PHS scattering vectors T (j) , for j = 1, · · · , N
with T (j) as defined in Eq. (5.47a) in each wire and the PHS as defined in Eq. (5.46b). Com-
plement them with the set of PHS scattering vectors T (j)

, for j = 1, · · · , N − 1 defined by
(m± = (m± 1)/2)

T (j)
=
(
0, 0, 0, 0

∣∣· · · ∣∣−m−,m+,−m+,m−
∣∣−m+,m−,−m−,m+

∣∣ · · · ∣∣ 0, 0, 0, 0)T ,
(5.68)

with m an odd positive integer. Notice that T (j) ..= −PΠ T
(j)

so that one has to demand that
α
T (j) = 0 has to comply with PHS. Thus, together the T (j) and T (j)

gap out (4N − 2) of
the 4N chiral modes in the wire. Identify the unique (up to an integer multiplicative factor)
scattering vector (m± = (m± 1)/2)

T (0)
=
(
−m+,m−,−m−,m+

∣∣ 0, 0, 0, 0∣∣ · · · ∣∣0, 0, 0, 0 ∣∣−m−,m+,−m+,m−
)T
, (5.69)

with m the same odd positive integer as in Eq. (5.68) that satisfies the Haldane criterion with
all T (j) and T (j)

and thus can potentially gap out the 2 remaining modes. However, it is
physically forbidden for it represents a non-local scattering from one edge to the other. It is
concluded that each boundary supports a single remaining chiral mode that is an eigenstate of
PHS.

To understand the nature of the single remaining chiral mode on each boundary, the local
linear transformation W of the bosonic fields

W =


−m− +m+ 0 0
+m+ −m− 0 0

0 0 −m− +m+

0 0 +m+ −m−

 , m± =
m± 1

2
, (5.70)

with determinant detW = m4 is used. When applied to the non-local scattering vector T (0)

that connects the two remaining chiral edge modes,

T̃
(0)

=W−1 T (0)

= (0,−1,+1, 0|0, 0, 0, 0| · · · |0, 0, 0, 0|+ 1, 0, 0,−1),
(5.71)
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while the matrix K changes under this transformation to

K̃ = diag (−m,m,m,−m). (5.72)

Noting that the representation of PHS is unchanged

W−1 PΠW = PΠ, (5.73)

one may interpret the remaining chiral edge mode as a PHS superposition of a Laughlin quasi-
particle and a Laughlin quasihole. It thus describes a fractional chiral edge mode on either side
of the two-dimensional array of quantum wires. The definite chirality is an important differ-
ence to the case of the fractional Z2 topological insulator discussed in Sec. 5.5.2. It guarantees
that any integer number n ∈ Z layers of this theory is stable, for no tunneling vector that acts
locally on one edge can satisfy the Haldane criterion (5.16). For each m, one may thus say
that the parafermion mode has a Z character, as does the SRE phase in symmetry class D.

5.5.4 Symmetry classes DIII and C: More fractional superconductors

The construction is very similar for classes DIII and C. to the cases already presented. Details
are relegated to Ref. [86]. For class DIII, the edge excitations (and bulk quasiparticles) of
the phase are TRS fractionalized Bogoliubov quasiparticles that have also been discussed
in one-dimensional realizations. (In the latter context, these TRS fractionalized Bogoliubov
quasiparticles are rather susceptible to perturbations. [60, 94])

5.6 Summary

In this section, a wire construction was developed to build models of short-range entangled
and long-range entangled topological phases of two-dimensional quantum matter, so as to
yield immediate information about the topological stability of their edge modes. As such, the
periodic table for integer topological phases was promoted to its fractional counterpart. The
following paradigms were applied.
(1) Each Luttinger liquid wire describes (spinfull or spinless) electrons. Abelian bosonization
was used.
(2) Back-scattering and short-range interactions within and between wires are added. Modes
are gapped out if these terms acquire a finite expectation value.
(3) A mutual compatibility condition, the Haldane criterion, is imposed among the terms that
acquire an expectation value. It is an incarnation of the statement that the operators have to
commute if they are to be replaced simultaneously by their expectation values.
(4) A set of discrete and local symmetries are imposed on all terms in the Hamiltonian. When
modes become massive, they may not break these symmetries.
(5) The model was analyzed in a strong-coupling limit, instead of the weak coupling limit in
which one derives the renormalization group flows for the interactions.

It has become fashionable to write papers in condensed matter physics that take Majorana
fermions as the building blocks of lattice models. Elegant mathematical results have been
obtained in this way, some of which having the added merit for bringing conceptual clarity.
However, the elementary building blocks of condensed matter are ions and electrons whose
interactions are governed by quantum electrodynamics. Majorana fermions in condensed mat-
ter physics can only emerge in a non-perturbative way through (i) the interactions between the
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electrons from the valence bands of a material, or (ii) as the low-energy excitations of ex-
otic quantum magnets. For Majorana fermions to be observable in condensed matter physics,
a deconfining transition must have taken place, a notoriously non-perturbative phenomenon.
One of the challenges that was undertaken in this section is to find interacting models for
itinerant electrons with local interactions that support Majorana fermions at low energies and
long wave lengths. This goal was achieved, starting from non-interacting itinerant electrons,
by constructing local many-body interactions that conserve the electron charge and that stabi-
lize two-dimensional bulk superconductors supporting gapless Majorana fermions along their
two-dimensional boundaries. This is why strictly many-body interactions are needed in the
symmetry classes D, DIII, and C to realize SRE topological phases in the fourth column of
Table 5.1.

Acknowledgments

I am grateful to Claudio Chamon, Titus Neupert, Luiz Santos, Shinsei Ryu, and Ronnie
Thomale with whom our collaborations have shaped Secs. 4 and 5. I am also grateful to
Maurizio Storni for his help with Sec. 3.



References

[1] Takahiro Morimoto, Akira Furusaki, and Christopher Mudry, “Anderson localization
and the topology of classifying spaces,” unpublished.

[2] More precisely, to guarantee that there are NK Kramers degenerate pairs of electrons in
the theory, demand that there exists a space and time independent transformation

O = +Σ1OΣ1 ∈ SL(2N,Z)

such that
K 7→ OTKO, V 7→ OT V O,

and
Q 7→ OTQ

with the transformed charge vector containing 2NK odd integers.
[3] Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V. (1979).

Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys.
Rev. Lett., 42, 673–676.

[4] Altland, Alexander and Zirnbauer, Martin R. (1997). Nonstandard symmetry classes in
mesoscopic normal-superconducting hybrid structures. Phys. Rev. B, 55, 1142–1161.

[5] Anderson, P. W. (1958). Absence of Diffusion in Certain Random Lattices. Phys.
Rev., 109, 1492–1505.

[6] Barkeshli, Maissam, Jian, Chao-Ming, and Qi, Xiao-Liang (2013). Theory of defects in
abelian topological states. Phys. Rev. B, 88, 235103.

[7] Barkeshli, Maissam, Jian, Chao-Ming, and Qi, Xiao-Liang (2013). Twist defects and
projective non-abelian braiding statistics. Phys. Rev. B, 87, 045130.

[8] Barkeshli, Maissam and Qi, Xiao-Liang (2012). Topological nematic states and non-
abelian lattice dislocations. Phys. Rev. X, 2, 031013.

[9] Berezinskiǐ, V. L. (1971). Destruction of Long-range Order in One-dimensional and
Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems.
Soviet Journal of Experimental and Theoretical Physics, 32, 493.

[10] Bernevig, B. Andrei, Hughes, Taylor L., and Zhang, Shou-Cheng (2006). Quantum spin
hall effect and topological phase transition in hgte quantum wells. Science, 314(5806),
1757–1761.

[11] Bernevig, B. A. and Zhang, S.-C. (2006). Quantum Spin Hall Effect. Phys. Rev.
Lett., 96(10), 106802.

[12] Brouwer, P. W., Furusaki, A., Gruzberg, I. A., and Mudry, C. (2000). Localization and
delocalization in dirty superconducting wires. Phys. Rev. Lett., 85, 1064–1067.

[13] Brouwer, P. W., Furusaki, A., Mudry, C., and Ryu, S. (2005). Disorder-induced criti-
cal phenomena–new universality classes in Anderson localization. BUTSURI 60, 935
(2005) (in Japanese, english version arXiv:cond-mat/0511622).



82 References

[14] Brouwer, P. W., Mudry, C., and Furusaki, A. (2000). Density of states in coupled chains
with off-diagonal disorder. Phys. Rev. Lett., 84, 2913–2916.

[15] Brouwer, P. W., Mudry, C., Simons, B. D., and Altland, A. (1998). Delocalization in
coupled one-dimensional chains. Phys. Rev. Lett., 81, 862–865.

[16] Budich, Jan Carl, Thomale, Ronny, Li, Gang, Laubach, Manuel, and Zhang, Shou-Cheng
(2012). Fluctuation-induced topological quantum phase transitions in quantum spin-hall
and anomalous-hall insulators. Phys. Rev. B, 86, 201407.

[17] Chen, Xie, Gu, Zheng-Cheng, Liu, Zheng-Xin, and Wen, Xiao-Gang (2013). Symmetry
protected topological orders and the group cohomology of their symmetry group. Phys.
Rev. B, 87, 155114.

[18] Chen, Xie, Gu, Zheng-Cheng, and Wen, Xiao-Gang (2011). Classification of gapped
symmetric phases in one-dimensional spin systems. Phys. Rev. B, 83, 035107.

[19] Chen, Xie, Gu, Zheng-Cheng, and Wen, Xiao-Gang (2011). Complete classification of
one-dimensional gapped quantum phases in interacting spin systems. Phys. Rev. B, 84,
235128.

[20] Cheng, Meng (2012). Superconducting proximity effect on the edge of fractional topo-
logical insulators. Phys. Rev. B, 86, 195126.

[21] Clarke, David J., Alicea, J., and Shtengel, K. (2013). Nature Comm., 4, 1348.
[22] Coleman, S. (1975). Quantum sine-Gordon equation as the massive Thirring model.

Phys. Rev. D, 11, 2088–2097.
[23] Deser, S., Jackiw, R., and Templeton, S. (1982). Three-Dimensional Massive Gauge

Theories. Phys. Rev. Lett., 48, 975–978.
[24] Dirac, P. A. M. (1931). Quantised Singularities in the Electromagnetic Field. Royal

Society of London Proceedings Series A, 133, 60–72.
[25] Dyson, F. J. (1953). The Dynamics of a Disordered Linear Chain. Phys. Rev., 92, 1331–

1338.
[26] Dyson, F. J. (1962). The Threefold Way. Algebraic Structure of Symmetry Groups and

Ensembles in Quantum Mechanics. Journal of Mathematical Physics, 3, 1199–1215.
[27] Fendley, P. (2012). J. Stat. Mech., P11020.
[28] Fidkowski, Lukasz and Kitaev, Alexei (2010). Effects of interactions on the topological

classification of free fermion systems. Phys. Rev. B, 81, 134509.
[29] Fidkowski, Lukasz and Kitaev, Alexei (2011). Topological phases of fermions in one

dimension. Phys. Rev. B, 83, 075103.
[30] Foster, Matthew S. and Ludwig, Andreas W. W. (2006). Interaction effects on two-

dimensional fermions with random hopping. Phys. Rev. B, 73, 155104.
[31] Foster, Matthew S. and Ludwig, Andreas W. W. (2008). Metal-insulator transition from

combined disorder and interaction effects in hubbard-like electronic lattice models with
random hopping. Phys. Rev. B, 77, 165108.

[32] Foster, Matthew S., Xie, Hong-Yi, and Chou, Yang-Zhi (2014). Topological protection,
disorder, and interactions: Survival at the surface of three-dimensional topological su-
perconductors. Phys. Rev. B, 89, 155140.

[33] Freedman, M., Nayak, C., Shtengel, K., Walker, K., and Wang, Z. (2004). A class of P,
T-invariant topological phases of interacting electrons. Annals of Physics, 310, 428–492.
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