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Abstract

We give a pedagogical introduction to topologically ordered states of matter, with the aim of

familiarizing the reader with their axiomatic topological quantum field theory description. We in-

troduce basic noninteracting topological phases of matter protected by symmetries, including the

Su-Schrieffer-Heeger model and the one-dimensional p-wave superconductor. The defining proper-

ties of topologically ordered states are illustrated explicitly using the toric code and – on a more

abstract level – Kitaev’s 16-fold classification of two-dimensional topological superconductors. Sub-

sequently, we present a short review of category theory as an axiomatic description of topological

order in two-dimensions. Equipped with this structure, we revisit Kitaev’s 16-fold way.

These lectures were in parts held at:

• Les Houches Summer School “Topological Aspects of Condensed Matter Physics”, 4–29 Au-

gust 2014, École de Physique des Houches, Les Houches, France

• XVIII Training Course in the Physics of Strongly Correlated Systems, 6–17 October 2014,

International Institute for Advanced Scientific Studies, Vietri sul Mare, Italy

• 7th School on Mathematical Physics “Topological Quantum Matter: From Theory to Appli-

cations”, 25–29 May 2015, Universidad de los Andes, Bogotá, Colombia
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I. INTRODUCTION TO TOPOLOGICAL PHASES IN CONDENSED MATTER

A. The notion of topology

In these lectures we will learn how to categorize and characterize some phases of matter

that have topological attributes. A topological property of a phase, such as boundary modes

(in an open geometry), topological response functions, or the character of its excitations, is

described by a set of quantized numbers, related to so-called topological invariants of the

phase. The quantization immediately implies that topological properties are universal (they

can be used to label the topological phase) and in some sense protected, because they cannot

change smoothly when infinitesimal perturbations are added. Topological properties, in the

sense that we want to discuss them here, can only be defined for

• spectrally gapped ground states on a manifold without boundary of

• local Hamiltonians at

• zero temperature.

The spectral gap allows to define an equivalence class of states, i.e., a phase, with the help

of the adiabatic theorem. Two gapped ground states are in the same phase if there exists

an adiabatic interpolation between their respective Hamiltonians, such that the spectral gap

above the ground state as well as the locality is preserved for all Hamiltonians along the

interpolation.

Often it is useful to further modify these rules to define topological phases that are

subject to symmetry constraints. We refer to topological states as being protected/enriched

by a symmetry group G, if the Hamiltonian has a symmetry G and only G-preserving

interpolations are allowed. Since the G-preserving interpolations are a subset of all local

interpolations, it is clear that symmetries make a topological classification of Hamiltonians

more refined.

The locality of a Hamiltonian is required to guarantee the quantization of topological

response functions and to distinguish topological characterizations depending on the di-

mensionality of space. If we were not to impose locality, any system could in essence be

zero-dimensional and there would be no notion of boundary states (which are localized over

short distances) or point-like and line-like excitations etc.
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Equipped with this definition of a topological phase, the exploration of topological states

of matter above all poses a classification problem. We would like to know how many phases

of quantum systems exists, that can be distinguished by their topological properties. We

would like to obtain such a classification while imposing any symmetry G that is physically

relevant, such as time-reversal symmetry, space-group or point-group symmetries of a crystal,

particle-number conservation etc. To identify the right mathematical tools that allow for

such a classification and to guarantee its completeness is a subject of ongoing research.

Here, we shall focus on aspects of this classification problem, which are well established and

understood.

Most fundamental is a distinction between two types of topological states of matter:

Those with intrinsic (long-range entangled) topological order 1 and those without. This

notion is also core to the structure of these lecture notes. In this Section, we only discuss

phases without intrinsic topological order, while the ensuing two Sections are devoted to

states with intrinsic topological order. A definition of intrinsic topological order can be

based on several equivalent characterizations of such a phase, of which we give three:

• Topological ground state degeneracy: On a manifold without boundary, the degeneracy

of gapped topologically degenerate ground states depends on the topological properties

of the manifold. There are no topologically degenerate ground states if the system is

defined on a sphere. The matrix elements of any local operator taken between two

distinct topologically degenerate ground states vanishes.

• Fractionalized excitations: There exist low-energy excitations which are point-like

[in two dimensions (2D) or above] or line-like [in three dimensions (3D) or above].

These excitations carry a fractional quantum numbers as compared to the microscopic

degrees of freedom that enter the Hamiltonian (for example, a fractional charge), are

deconfined and dynamical (i.e, free to move in the low-energy excited states).

• Topological entanglement entropy: The entanglement entropy between two parts of a

system that is in a gapped zero-temperature ground state typically scales with the size

of the line/surface that separates the two regions (“area-law entanglement”). Topo-

logically ordered, long-range entangled states have a universal subleading correction

to this scaling that is characteristic for the type of topological order.
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(Note that these statements, as many universal properties we discuss, are only strictly

true in the thermodynamic limit of infinite system size. For example, in a finite system,

the ground state degeneracy is lifted by an amount that scales exponential in the system

size.) As fractionalized excitations in the above sense may only exist in two or higher

dimensions, intrinsic topological order cannot be found in one-dimensional (1D) phases of

matter. Further, for intrinsic topological order to occur, interactions are needed in the

system.

Examples of topologically nontrivial phases (both with and without intrinsic topological

order) exist in absence of any symmetry. However, most of the phases without intrinsic

topological order belong to the so-called symmetry protected topological (SPT) phases. In

these cases, the topology is protected by a symmetry. These phases almost always possess

topologically protected boundary modes when defined on a manifold with boundary, except

if the boundary itself breaks the protecting symmetry (as could be the case with inversion

symmetry, for example).

In contrast, phases with intrinsic topological order are not necessarily equipped with

boundary modes, even if the boundary of the manifold preserves the defining symmetries of

the phase. If the definition of a phase with intrinsic topological order relies on symmetries,

it is named symmetry enriched topological phase (SET).

An alternative characterization of topological properties of a phase uses the entanglement

between different subsystems. While we opt not to touch upon this concept here, we want

to make contact to the ensuing terminology: All phases with intrinsic topological order are

called long-range entangled (LRE). The term short-range entangled (SRE) phase is often

used synonymously with “no intrinsic topological order”. (Some authors count 2D phases

with nonvanishing thermal Hall conductivity, such as the p + ip superconductors, but no

intrinsic topological order unless gauged, as LRE.)

In these lecture notes, we will encounter two classifications of a subset of topological

phases. The following Subsection introduces the complete classification of non-interacting

fermionic Hamiltonians with certain symmetries (which have no intrinsic topological order).

Section III is concerned with the unified description of 2D phases with intrinsic topological

order in absence of any symmetries.

6



B. Classification of noninteracting fermion Hamiltonians: The 10-fold way

We have stated that SPT order in SRE states manifests itself via the presence of gapless

boundary states in an open geometry. In fact, there exists a intimate connection between

the topological character of the gapped bulk state and its boundary modes. The latter are

protected against local perturbations on the boundary that (i) preserve the bulk symmetry

and (ii) induce no intrinsic topological order or spontaneous symmetry breaking in the

boundary modes. This bulk-boundary correspondence can be used to classify SPT phases.

Two short-range entangled phases with the same symmetries belong to a different topological

class, if the interface between the two phases hosts a state in the bulk gap and this state

cannot be moved into the continuum of excited states by any local perturbation that obey

(i) and (ii). Equivalently, to change the topological attribute of a gapped bulk state via any

smooth changes in the Hamiltonian, the bulk energy gap has to close and reopen.

In Ref. 2 Schnyder et al. use this bulk-boundary correspondence to classify all nonin-

teracting fermionic Hamiltonians. For the topological phases that they discuss, two funda-

mental symmetries, particle-hole symmetry (PHS) and time-reversal symmetry (TRS), are

considered. In the following, we will review the essential results of this classification.2–4

1. Classification with respect to time-reversal and particle-hole symmetry

Symmetries in quantum mechanics are operators that have to preserve the absolute value

of the scalar product of any two vectors in the Hilbert space. They can thus be either unitary

operators, preserving the scalar product, or antiunitary operators, turning the scalar product

into its complex conjugate (up to a phase). For a unitary operator to be a symmetry of a

given Hamiltonian H, the operator has to commute with H. Consequently, the Hamiltonian

can be block diagonalized, where each block acts on one eigenspace of the unitary symmetry.

If H has a unitary symmetry, we block-diagonalize it and then consider the topological

properties of each block individually. This way, we do not have to include unitary symmetries

(except for the product of TRS and PHS and the omnipresent particle number conservation)

in the further considerations, as we will not focus on the burgeoning field of crystalline

topological insulators.

A fundamental antiunitary operator in quantum mechanics is the reversal of time T . Let
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us begin by recalling its elementary properties. If a given Hamiltonian H is TRS, that is,

T HT −1 = +H, (1a)

the time-evolution operator at time t should be mapped to the time-evolution operator at

−t by the operator T

T e−itHT −1 = e−T iT −1tH

= e−i(−t)H .
(1b)

We conclude that the reversal of time is indeed an antiunitary operator T iT −1 = −i. It

can be represented as T = TK, where K denotes complex conjugation and T is a unitary

operator. Applying the reversal of time twice on any state must return the same state up

to an overall phase factor eiφ

eiφ !
= T 2 = T (TT)−1 ⇒ T = eiφTT, TT = eiφT. (1c)

Inserting the two last equations into one another, one obtains T = e2iφT , i.e., e2iφ has to

equal +1. We conclude that the time-reversal operator either squares to +1 or to −1

T 2 = +1, T 2 = −1. (1d)

The second fundamental antiunitary symmetry considered here is charge conjugation P .

Its most important incarnation in solid state physics is found in the theory of supercon-

ductivity. In an Andreev reflection process, an electron-like quasi particle that enters a

superconductor is reflected as a hole-like quasi particle. The charge difference between inci-

dent and reflected state is accounted for by adding one Cooper pair to the superconducting

condensate. In the mean-field theory of superconductivity, the energies of the electron-like

state and the hole-like state are equal in magnitude and have opposite sign, giving rise to

the PHS. In this case, rather than being a fundamental physical symmetry of the system

like TRS is, PHS emerges due to a redundancy in the mean-field description. We define a

(single-particle) Hamiltonian H to be PHS if

PHP−1 = +H. (1e)

In order to also reverse the sign of charge, P has to turn the minimal coupling p − ieA

into p + ieA, where p is the momentum operator and A is the electromagnetic gauge
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potential. This is achieved by demanding P iP−1 = −i. We conclude that P is indeed an

antiunitary operator that can be decomposed as P = PK, where P is a unitary operator. As

a consequence, the reasoning of Eq. (1c) also applies to P and we conclude that the charge

conjugation operator either squares to +1 or to −1

P2 = +1, P2 = −1. (1f)

In the case where the operators T and P are both symmetries of H, their product is

also a symmetry of H. We call this product chiral transformation C := T P . It is a unitary

operator. The Hamiltonian H transforms under the chiral symmetry as

CHC−1 = +H. (1g)

(It is important to note that both P and C anticommute rather than commute with the

single-particle first-quantized HamiltonianHα,α′ that we will introduce below.) Observe that

a Hamiltonian can have a chiral symmetry, even if it possesses neither of PHS and TRS. We

can now enumerate all combinations of the symmetries P , T , and C that a Hamiltonian can

obey, accounting for the different signs of T 2 and P2. There are in total ten such symmetry

classes, listed in Tab. I. The main result of Schnyder et al. in Ref. 2 is to establish how

many distinct phases with protected edge modes exist on the (d− 1)-dimensional boundary

of a phase in d dimensions. We find three possible cases: If there is only one (topologically

trivial) phase, the entry ∅ is found in Tab. I. If there are exactly two distinct phases (one

trivial and one topological phase), Z2 is listed. Finally, if there exists a distinct topological

phase for every integer, Z is listed.

2. Flatband Hamiltonians and homotopy groups

There are several approaches to obtain the entries Z2 and Z in Tab. I. For one, the

theory of Anderson localization can be employed to determine in which spatial dimensions

boundaries can host localization-protected states (the topological surface states) under a

given symmetry. This was done by Schnyder et al. in Ref. 2. Kitaev, on the other hand,

derived the table using the algebraic structure of Clifford algebras in the various dimensions

and symmetry classes.4 In mathematics, this goes under the name K-theory.

Here, we want to give a flavor of the mathematical structure behind the table by con-

sidering two examples. To keep matters simple, we shall restrict ourselves to the situation
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TABLE I. Symmetry classes of noninteracting fermionic Hamiltonians from Refs. 3 and 4. The

columns contain from left to right: Cartan’s name for the symmetry class; the square of the time

reversal operator, the particle-hole operator, and the chiral operator (∅ means the symmetry is

not present); the group of topological phases that a Hamiltonian with the respective symmetry

can belong to for the dimensions d = 1, · · · , 8 of space. The first two rows are called “complex

classes”, while the lower eight rows are the “real classes”. The homotopy groups of the former show

a periodicity with period 2 in d, while those of the latter have a period 8 in d (Bott periodicity).

T 2 P2 C2 d 1 2 3 4 5 6 7 8

A ∅ ∅ ∅ ∅ Z ∅ Z ∅ Z ∅ Z

AIII ∅ ∅ + Z ∅ Z ∅ Z ∅ Z ∅

AII − ∅ ∅ ∅ Z2 Z2 Z ∅ ∅ ∅ Z

DIII − + + Z2 Z2 Z ∅ ∅ ∅ Z ∅

D ∅ + ∅ Z2 Z ∅ ∅ ∅ Z ∅ Z2

BDI + + + Z ∅ ∅ ∅ Z ∅ Z2 Z2

AI + ∅ ∅ ∅ ∅ ∅ Z ∅ Z2 Z2 Z

CI + − + ∅ ∅ Z ∅ Z2 Z2 Z ∅

C ∅ − ∅ ∅ Z ∅ Z2 Z2 Z ∅ ∅

CII − − + Z ∅ Z2 Z2 Z ∅ ∅ ∅

where the system is translationally invariant and periodic boundary conditions are imposed.

In second quantization, the Hamiltonian H has the Bloch representation

H =

∫
ddkψ†α(k)Hα,α′(k)ψα′(k), (2a)

where ψ†α(k) creates a fermion of flavor α = 1, · · · , N at momentum k in the Brillouin zone

(BZ) and the summation over α and α′ is implicit. The flavor index may represent orbital,

spin, or sublattice degrees of freedom. Energy bands are obtained by diagonalizing the

N ×N matrix H(k) at every momentum k ∈ BZ with the aid of a unitary transformation

U(k)

U †(k)H(k)U(k) = diag
[
εm+n(k), · · · , εn+1(k), εn(k), · · · , ε1(k)

]
, (2b)

where the energies are arranged in descending order on the righthand side and n,m ∈ Z
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such that n+m = N . So as to start from an insulating ground state, we assume that there

exists an energy gap between the bands n and n+ 1 and that the chemical potential µ lies

in this gap

εn(k) < µ < εn+1(k), ∀k ∈ BZ. (3)

The presence of the gap allows us to adiabatically deform the Bloch Hamiltonian H(k) to

the flatband Hamiltonian

Q(k) := U(k)


11m 0

0 −11n


U †(k) (4a)

that assigns the energy −1 and +1 to all states in the bands below and above the gap, respec-

tively. This deformation preserves the eigenstates, but removes the nonuniversal information

about energy bands from the Hamiltonian.

In other words, the degenerate eigenspaces of the eigenvalues ±1 of Q(k) reflect the par-

titioning of the single-particle Hilbert space introduced by the spectral gap in the spectrum

of H(k). The degeneracy of its eigenspaces equips Q(k) with an extra U(n)× U(m) gauge

symmetry: While the (n+m)× (n+m) matrix U(k) of Bloch eigenvectors that diagonalizes

Q(k) is an element of U(n + m) for every k ∈ BZ, we are free to change the basis for its

lower and upper bands by a U(n) and U(m) transformation, respectively. Hence Q(k) is an

element of the space C0 := U(n+m)/[U(n)× U(m)] defining a map

Q : BZ→ C0 . (5)

The group of topologically distinct maps Q, or, equivalently, the number of topologically

distinct Hamiltonians H, is given by the homotopy group

πd (C0) (6)

for any dimension d of the BZ. (The homotopy group is the group of equivalence classes of

maps from the d-dimensional sphere to a target space, in this case C0. Even though the BZ

is a d-dimensional torus, it turns out that this difference between torus and sphere does not

affect the classification as discussed here.)

For example, in d = 2 we have π2 (C0) = Z. A physical example of a family of Hamil-

tonians that exhausts the topological sectors of this group is found in the integer quantum

Hall effect. The incompressible ground state with r ∈ N filled Landau levels is topologically
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distinct from the ground state with N 3 r′ 6= r filled Landau levels. Two different patches of

space with r and r′ filled Landau levels have |r− r′| gapless edge modes running at their in-

terface, reflecting the bulk-boundary correspondence of the topological phases. In contrast,

π3 (C0) = Z1 renders all noninteracting fermionic Hamiltonians in 3D space topologically

equivalent to the vacuum, if no further symmetries besides the U(1) charge conservation are

imposed.

As a second example, let us discuss a Hamiltonian that has only chiral symmetry and

hence belongs to the symmetry class AIII. The chiral symmetry implies a spectral symmetry

of H(k). If gapped, H(k) must have an even number of bands N = 2n, n ∈ Z. When

represented in the eigenbasis of the chiral symmetry operator C, the spectrally flattened

Hamiltonian Q(k) and the chiral symmetry operator have the representations

Q(k) =


 0 q(k)

q†(k) 0


 , C =


11n 0

0 −11n


 , (7a)

respectively. From Q(k)2 = 1, one concludes that q(k) can be an arbitrary unitary matrix.

We are thus led to consider the homotopy group πd(C1) of the mapping

q : BZ→ C1 = U(n). (7b)

For example, in d = 1 spatial dimensions π3(C1) = Z. A tight-binding model with non-trivial

topology that belongs to this symmetry class will be discussed in Sec. I C.

With these examples, we have discussed the two complex classes A and AIII. In the real

classes, which have at least one antiunitary symmetry, it is harder to obtain the constraints

on the spectrally flattened Hamiltonian Q(k). The origin for this complication is that the

antiunitary operators representing time-reversal and particle-hole symmetry relates Q(k)

and Q(−k) rather than acting locally in momentum space.

3. Topological invariants

Given a gapped noninteracting fermionic Hamiltonian with certain symmetry properties

in d-dimensional space, one can use Tab. I to conclude whether the system can potentially

be in a topological phase. However, to understand in which topological sector the system is,

we have to do more work. To obtain this information, one computes topological invariants
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or topological quantum numbers of the ground state. Such invariants are automatically

numbers in the group of possible topological phases (Z or Z2). For many of them, a variety

of different-looking but equivalent representations are known.

To give concrete examples, we shall discuss the invariants for all Z topological phases

found in Tab. I. These are called Chern numbers in the symmetry classes without chiral

symmetry and winding numbers in the classes with chiral symmetry.

In physics, topological attributes refer to global properties of a physical system that is

made out of local degrees of freedom and might only have local, i.e., short-ranged, correla-

tions. The distinction between global and local properties parallels the distinction between

topology and geometry in mathematics, where the former refers to global structure, while

the latter refers to local structure of objects. In differential geometry, a bridge between

topology and geometry is given by the Gauss-Bonnet theorem. It states that for compact

2D Riemannian manifolds M without boundary, the integral over the Gaussian curvature

F (x) of the manifold is (i) integer and (ii) a topological invariant

2(1− g) =
1

2π

∫

M

d2xF (x). (8)

Here, g is the genus of M , e.g., g = 0 for a 2D sphere and g = 1 for a 2D torus. The Gaussian

curvature F (x) can be defined as follows. Attach to every point on M the tangential plane,

a 2D vector space. Take some vector from the tangential plane at a given point on M and

parallel transport it around an infinitesimal closed loop on M . The angle mismatch of the

vector before and after the transport is proportional to the Gaussian curvature enclosed in

the loop.

In the physical systems that we want to describe, the manifold M is the BZ and the

analogue of the tangent plane on M is a space spanned by the Bloch states of the occupied

bands at a given momentum k ∈ BZ. The Gaussian curvature of differential geometry is

now generalized to a curvature form, called Berry curvature F. In our case, it is given by

an n× n matrix of differential forms that is defined via the Berry connection A as

F := Fij(k) dki ∧ dkj (9a)

Fij(k) := ∂iAj(k)− ∂jAi (k) + [Ai (k), Aj(k)], i, j = 1, · · · , d, (9b)

A := Ai (k) dki , (9c)

A
(ab)
i (k) :=

N∑

α=1

U †aα(k)∂iUαb(k), a, b = 1, · · · , n, i = 1, · · · , d. (9d)
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(Two different conventions for the Berry connection are commonly used: Either it is purely

real or purely imaginary. Here we choose the latter option.) The unitary transformation

U(k) that diagonalizes the Hamiltonian was defined in Eq. (2b), both Ai (k) and Fij(k)

are n × n matrices, we write ∂i ≡ ∂/∂ki and the sum over repeated spatial coordinate

components i, j is implicit.

Under a local U(n) gauge transformation in momentum space that acts on the states of

the lower bands and is parametrized by the n× n matrix G(k)

Uαa(k) −→ Uαb(k)Gba(k), α = 1, · · · , N, a = 1, · · · , n, (10a)

the Berry connection A changes as

A −→ G†AG+G†dG, (10b)

while the Berry curvature F changes covariantly

F −→ G†FG, (10c)

leaving its trace invariant.

a. Chern numbers For the spatial dimension d = 2, the generalization of the Gauss-

Bonnet theorem (8) in algebraic topology was found by Chern to be

2C(1) :=
i

2π

∫

BZ

tr F

= 2
i

2π

∫

BZ

d2k trF12.

(11)

This defines a gauge-invariant quantity, the first Chern number C(1). Remarkably, C(1) can

only take integer values. In order to obtain a topological invariant for any even dimension

d = 2s of space, we can use the s-th power of the local Berry curvature form F (using the

wedge product) to build a gauge invariant d-form that can be integrated over the BZ to obtain

scalar. Upon taking the trace, this scalar is invariant under the gauge transformation (10a)

and defines the s-th Chern number

2C(s) :=
1

s!

(
i

2π

)s ∫

BZ

tr [Fs] , (12)

where Fs = F ∧ · · · ∧ F. As with the case s = 1 that we have exemplified above, C(s) is

integer for any s = 1, 2, · · · .
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From inspection of Tab. I we see that symmetry classes without chiral symmetry may

have integer topological invariants Z only when the dimension d of space is even. In fact, all

the integer invariants of these classes are given by the Chern number C(d/2) of the respective

dimension.

b. Winding numbers Let us now consider systems with chiral symmetry C. To con-

struct their topological invariants as a natural extension of the above, we consider a different

representation of the Chern numbers C(s). In terms of the flatland projector Hamiltonian

Q(k) that was defined in Eq. (4a), we can write

C(s) ∝ εi1···id

∫

BZ

ddk tr
[
Q(k)∂i1Q(k) · · · ∂idQ(k)

]
, d = 2s. (13)

The form of Eq. (13) allows to interpret C(s) as the winding number of the unitary trans-

formation Q(k) over the compact BZ. One verifies that C(s) = 0 for symmetry classes with

chiral symmetry by inserting CC† at some point in the expression and anticommuting C

with all Q, using the cyclicity of the trace. After 2s + 1 anticommutations, we are back

to the original expression up to an overall minus sign and found C(s) = −C(s). Hence, all

systems with chiral symmetry have vanishing Chern numbers.

In odd dimensions of space, we can define an alternative topological invariant for systems

with chiral symmetry by modifying Eq. (13) and using the chiral operator C

W(s) :=
(−1)ss!

2(2s+ 1)!

(
i

2π

)s+1

εi1···id

∫

BZ

ddk tr
[
CQ(k)∂i1Q(k) · · · ∂idQ(k)

]

=
(−1)ss!

(2s+ 1)!

(
i

2π

)s+1

εi1···id

∫

BZ

ddk tr
[
q†(k)∂i1q(k)∂i2q

†(k) · · · ∂idq(k)
]
, d = 2s+ 1.

(14)

Upon anticommuting the chiral operator C once with all matrices Q and using the cyclicity

of the trace, one finds that the expression for W(s) vanishes for even dimensions. The second

line of Eq. (14) allows to interpret W(s) as the winding number of the unitary off-diagonal

part q(k) of the chiral Hamiltonian that was defined in Eq. (7a). With Eq. (14) we have

given topological invariants for all entries Z in odd dimensions d in Tab. I.

In summary, we have now given explicit formulas for the topological invariants for all

entries Z in Tab. I for systems with translational invariance. It is important to remember

that the classification of Tab. I is restricted to systems without interactions. If interactions
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are allowed, that neither spontaneously nor explicitly break the defining symmetry of a

symmetry class, one of two things can happen: i) Two phases which are distinguished

by a noninteracting invariant like W(0) might, sometimes but not always, be connected

adiabatically (i.e., without a closing of the spectral gap) by turning on strong interactions.

ii) Interactions can enrich the classification of Tab. I by inducing new phases with topological

response functions that are distinct from those of the noninteracting phases. We will given

an example for the scenario i) in Sec I E.

Besides, interactions can strongly modify the topological boundary modes of the nonin-

teracting systems to the extend that they can be gapped without breaking the protective

symmetries, but at the expense of introducing topological order on the boundary.

C. The Su-Schrieffer-Heeger model

The first example of a topological band insulator that we consider here is also the simplest:

The Su-Schrieffer-Heeger model5 describes a 1D chain of atoms with one (spinless) electronic

orbital each at half filling. The model was originally proposed to describe the electronic

structure of polyacetylene. This 1D organic molecule features a Peierls instability by which

the hopping integral between consecutive sites is alternating between strong and weak.

This enlarges the unit cell to contain two sites A and B. The second-quantized mean-field

Hamiltonian reads

H = t
N∑

i=1

[
(1− δ)c†A,icB,i + (1 + δ)c†B,icA,i+1 + h.c.

]
. (15)

Here, c†A,i and c†B,i create an electron in the i-th unit cell on sublattice A and B, respec-

tively. If we identify i = N + 1 ≡ 1, periodic boundary conditions are implemented. The

corresponding Bloch Hamiltonian

H = t
∑

k∈BZ

∑

α=A,B

c†α,khαβ,kcβ,k (16a)

hk =


 0 (1− δ) + (1 + δ)e−ik

(1− δ) + (1 + δ)eik 0


 (16b)

= σx [(1− δ) + (1 + δ) cos k] + σy(1 + δ) sin k, (16c)

where σx and σy are the first two Pauli matrices acting on the sublattice index, t is the

nearest-neighbor hopping integral, and δ is a dimensionless parametrization of the strong-
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Figure 3: Energy spectra for the 1D p-wave wire with open boundary con-
ditions in the (a) trivial phase (b)non-trivial topological phase with a zero
energy mode on each boundary point.
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FIG. 1. Energy spectra for the Su-Schrieffer-Heeger model with open boundary conditions (a)

in the trivial phase and (b) in the nontrivial topological phase with a zero energy mode on each

boundary point.

weak dimerization of bonds.

We observe that Hamiltonian (16) has time-reversal symmetry T = K, chiral symmetry

C = σz and thus also particle-hole symmetry P = σzK. This places it in class BDI of Tab. I

with a Z topological characterization. Observe that breaking the time-reversal symmetry

would not alter the topological properties, as long as the chiral symmetry is intact. The

model would then belong to class AIII, which also features a Z classification. Hence, it is the

chiral symmetry that is crucial to protecting the topological properties of Hamiltonian (16).

Notice that generic longer-range hopping (between sites of the same sublattice) breaks the

chiral symmetry.

What are the different topological sectors that can be accessed by tuning the parameter

δ in the Su-Schrieffer-Heeger model? We observe that the dispersion

ε2
k = 2

[
(1 + δ2) + (1− δ2) cos k

]
(17)

is gapless for δ = 0, hinting that this is the boundary between two distinct phases δ > 0 and

δ < 0. As we are interested in understanding the topological properties of these phases, we

can analyze them for any convenient value of the parameter δ and then conclude that they

are the same in the entire phase by adiabaticity. We consider the Hamiltonian (15) with
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open boundary conditions and choose the representative parameters

• δ = +1 : The operators c†1,A and c†N,B do not appear in the Hamiltonian for the open

chain. Hence, there exists a state at either end of the open chain that can be occupied

or unoccupied at no cost of energy. Thus, either end of the chain supports a localized

topological end state (see Fig. 1). Away from δ = +1, as long as δ > 0, the end

states start to overlap and split apart in energy by an amount that is exponentially

small in the length N of the chain. We can back up this observation by evaluating the

topological invariant (14) for this phase. The off-diagonal projector is qk = e−ik and

its winding number evaluates to

W(0) =
i

2π

∫
dk eik(−i)e−ik = 1. (18)

• δ = −1 : In this case strong bonds form between the two sites in every unit cell and no

topological end states appear. Correspondingly, as the off-diagonal projector qk = 1

is independent of k, we conclude that the winding number vanishes W(0) = 0.

One can visualize the winding number of a two-band Hamiltonian that has the form

hk = dk · σ in the following way. If the Hamiltonian has chiral symmetry, we can choose

this symmetry to be represented by C = σz without loss of generality. Then dk has to lie in

the x-y-plane for every k and may not be zero if the phase is gapped. The winding number

W(0) measures how often dk winds around the origin in the x-y-plane as k changes from 0

to 2π.

Besides the topological end states, the Su-Schrieffer-Heeger model also features topolog-

ical domain wall states between a region with δ > 0 and δ < 0. Such topological midgap

modes have to appear pairwise in any periodic geometry. As the system is considered at

half filling, each of these modes binds half an electron charge. This is an example of charge

fractionalization at topological defects. It is important to remember that these defects are

not dynamical, but are rigidly fixed external perturbations. Therefore, this form of fraction-

alization is not related to intrinsic topological order.

D. The one-dimensional p-wave superconductor

In the Su-Schrieffer-Heeger model, particle-hole symmetry (and with it the chiral symme-

try) is in some sense fine-tuned, as it is lost if generic longer-range hoppings are considered.
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In superconductors, particle-hole symmetry arises more naturally as a symmetry that is

inherent in the redundant description of mean-field Bogoliubov-deGennes Hamiltonians.

Here, we want to consider the simplest model for a topological superconductor that has

been studied by Kitaev in Ref. 6. The setup is again a 1D chain with one orbital for spinless

fermion on each site. Superconductivity is encoded in pairing terms c†ic
†
i+1 that do not

conserve particle number. The Hamiltonian is given by

H =
N∑

i=1

[
−t
(
c†ici+1 + c†i+1ci

)
− µc†ici + ∆c†i+1c

†
i + ∆∗cici+1

]
. (19)

Here, µ is the chemical potential and ∆ is the superconducting order parameter, which we

will decompose into its amplitude |∆| and complex phase θ, i.e., ∆ = |∆|eiθ.

The fermionic operators c†i obey the algebra

{c†i , cj} = δi,j, (20)

with all other anticommutators vanishing. We can chose to trade the operators c†i and ci on

every site i for two other operators ai and bi that are defined by

ai = e−iθ/2ci + eiθ/2c†i , bi =
1

i

(
e−iθ/2ci − eiθ/2c†i

)
. (21)

These so-called Majorana operators obey the algebra

{ai, aj} = {bi, bj} = 2δij, {ai, bj} = 0 ∀i, j. (22)

In particular, they square to 1

a2
i = b2

i = 1, (23)

and are self-conjugate

a†i = ai, b†i = bi. (24)

In fact, we can always break up a complex fermion operator on a lattice site into its real

and imaginary Majorana components though it may not always be a useful representation.

As an aside, note that the Majorana anti-commutation relation in Eq. (22) is the same as

that of the generators of a Clifford algebra where the generators all square to +1. Thus,

mathematically one can think of the operators ai (or bi) as matrices forming by themselves

the representation of Clifford algebra generators.
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Figure 4: Schematic illustration of the lattice p-wave superconductor Hamil-
tonian in the (a) trivial limit (b) non-trivial limit. The white (empty) and
red(filled) circles represent the Majorana fermions making up each physical
site (oval). The fermion operator on each physical site (cj) is split up into two
Majorana operators (a2j�1 and a2j). In the non-trivial phase the unpaired
Majorana fermion states at the end of the chain are labelled with a 1 and a
2. These are the states which are continuously connected to the zero-modes
in the non-trivial topological superconductor phase.

though it may not always be a useful representation. As an aside, note that
the Majorana anti-commutation relation in Eq. 45 is the same as that of
the generators of a Cli↵ord algebra where the generators all square to +1.
Thus, mathematically one can think of the operators ai as matrices forming
the representation of Cli↵ord algebra generators.

Using the Majorana representation the Hamiltonian for the lattice p-wave
wire becomes

HBdG =
i

2

X

j

(�µa2j�1a2j + (t + |�|)a2ja2j+1 + (�t + |�|)a2j�1a2j+2) . (47)

The factor of i in front of the Hamiltonian may seem out of place, but it
is required for Hermiticity when using the Majorana representation. As a
quick example, one can see that an operator like (a2ja2j�1)

† = a†
2j�1a

†
2j =

a2j�1a2j = �a2ja2j�1 is anti-Hermitian and becomes Hermitian if a factor of
i is added i.e. ia2ja2j�1 is Hermitian.

In this representation we can illustrate the key di↵erence between the
topological and trivial phases by looking at two special limits
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FIG. 2. Schematic illustration of the lattice p-wave superconductor Hamiltonian in the (a) trivial

limit (b) non-trivial limit. The white (empty) and red (filled) circles represent the Majorana

fermions making up each physical site (oval). The fermion operator on each physical site (cj) is

split up into two Majorana operators (aj and bj). In the non-trivial phase the unpaired Majorana

fermion states at the end of the chain are labelled with a1 and bN . These are the states which are

continuously connected to the zero-modes in the non-trivial topological superconductor phase.

When rewritten in the Majorana operators, Hamiltonian (19) takes (up to a constant)

the form

H =
i

2

N∑

i=1

[−µai bi + (t+ |∆|)bi ai+1 + (−t+ |∆|)ai bi+1] . (25)

After imposing periodic boundary conditions, it is again convenient to study the system in

momentum space. When defining the Fourier transform of the Majorana operators ai =
∑

i e
ikiak we note that the the self-conjugate property (24) that is local in position space

translates into a†k = a−k in momentum space (and likewise for the bk). The momentum

space representation of the Hamiltonian is

H =
∑

k∈BZ

∑

α=A,B

(ak bk)hk


a−k
b−k


 (26a)

hk =


 0 − iµ

2
+ it cos k + |∆| sin k

iµ
2
− it cos k + |∆| sin k 0


 (26b)

= σx|∆| sin k + σy

(µ
2
− t cos k

)
, (26c)

While this Bloch Hamiltonian is formally very similar to that of the Su-Schrieffer-Heeger

model (16), we have to keep in mind that it acts on entirely different single-particle degrees of

freedom, namely in the space of Majorana operators instead of complex fermionic operators.
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As with the case of the Su-Schrieffer-Heeger model, the Hamiltonian (26) has a time-reversal

symmetry T = σzK and a particle-hole symmetry P = K which combine to the chiral

symmetry C = σz. Hence, it belongs to symmetry class BDI as well. For the topological

properties that we explore below, only the particle-hole symmetry is crucial. If time-reversal

symmetry is broken, the model changes to symmetry class D, which still supports a Z2

topological grading.

To determine its topological phases, we notice that Hamiltonian (26) is gapped except

for |t| = |µ/2|. We specialize again on convenient parameter values on either side of this

potential topological phase transition

• µ = 0, |∆| = t : The Bloch matrix hk takes exactly the same form as that of the

Su-Schrieffer-Heeger model (16) for the parameter choice δ = +1. We conclude that

the Hamiltonian (26) is in a topological phase. The Hamiltonian reduces to

H = it
∑

j

bjaj+1. (27)

A pictorial representation of this Hamiltonian is shown in Fig. 2 b). With open

boundary conditions it is clear that the Majorana operators a1 and bN are not coupled

to the rest of the chain and are ‘unpaired’. In this limit the existence of two Majorana

zero modes localized on the ends of the chain is manifest.

• ∆ = t = 0, µ < 0 : This is the topologically trivial phase. The Hamiltonian is

independent of k and we conclude that the winding number vanishes W(0) = 0. In this

case the Hamiltonian reduces to

H = −µ i

2

∑

j

ajbj. (28)

In its ground state the Majorana operators on each physical site are coupled but the

Majorana operators between each physical site are decoupled. In terms of the physical

complex fermions, it is the ground state with either all sites occupied or all sites empty.

A representation of this Hamiltonian is shown in Fig. 2 a). The Hamiltonian in the

physical-site basis is in the atomic limit, which is another way to see that the ground

state is trivial. If the chain has open boundary conditions there will be no low-energy

states on the end of the chain if the boundaries are cut between physical sites. That
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is, we are not allowed to pick boundary conditions where a physical complex fermionic

site is cut in half.

These two limits give the simplest representations of the trivial and non-trivial phases.

By tuning away from these limits the Hamiltonian will have some mixture of couplings

between Majorana operators on the same physical site, and operators between physical

sites. However, since the two Majorana modes are localized at different ends of a gapped

chain, the coupling between them will be exponentially small in the length of the wire and

they will remain at zero energy. In fact, in the non-trivial phase the zero modes will not be

destroyed until the bulk gap closes at a critical point.

It is important to note that these zero modes count to a different many-body ground state

degeneracy than the end modes of the Su-Schrieffer-Heeger model. The difference is rooted

in the fact that one cannot build a fermionic Fock space out of an odd number of Majorana

modes, because they are linear combinations of particles and holes. Rather, we can define

a single fermionic operator out of both Majorana end modes a1 and bN as c† := a1 + ibN .

The Hilbert space we can build out of a1 and bN is hence inherently nonlocal. This nonlocal

state can be either occupied or empty giving rise to a two-fold degenerate ground state of

the chain with two open ends. (In contrast, the topological Su-Schrieffer-Heeger chain has

a four-fold degenerate ground state with two open ends, because it has one fermionic mode

on each end.) The Majorana chain thus displays a different form of fractionalization than

the Su-Schrieffer-Heeger chain. For the latter, we observed that the topological end modes

carry fractional charge. In the Majorana chain, the end modes are a fractionalization of a

fermionic mode into a superposition of particle and hole (and have no well defined charge

anymore), but the states |0〉 (with c|0〉 = 0) and c†|0〉 do have distinct fermion parity. The

nonlocal fermionic mode formed by two Majorana end modes is envisioned to work as a

qubit (a quantum-mechanical two-level system) that stores quantum information (its state)

in a way that is protected against local noise and decoherence.

E. Reduction of the 10-fold way classification by interactions: Z→ Z8 in class BDI

When time-reversal symmetry T = K is present, the model considered in Sec. I D belongs

to class BDI of the classification of noninteracting fermionic Hamiltonians in Tab. I with a

Z topological characterization. We want to explore how interactions alter this classification,
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following a calculation by Fidkowski and Kitaev from Ref. 8. To this end, we consider a

collection of n identical 1D topological Majorana chains in class BDI and only consider their

Majorana end modes on one end, which we denote by γ1, · · · , γn. We will take the point of

view that if we can gap the edge, we can continue the bulk to a trivial state (insulator). This

is not entirely a correct point of view in general (see 2D topologically ordered states such

as the toric code discussed in the next Section), but works for our purposes. Given some

integer n, we ask whether we can couple the Majorana modes locally on one end such that

no gapless degrees of freedom are left on that end and the ground state with open boundary

conditions becomes singly degenerate. To remain in class BDI, we only allow couplings that

respect time-reversal symmetry. Let us first derive the action of T on the Majorana modes.

The complex fermion operators are left invariant under time-reversal T cT −1 = c. Hence,

T (a+ ib)T −1 = T aT −1 − iT bT −1 !
= a+ ib ⇒ T aT −1 = a, T bT −1 = −b. (29)

Thus, when acting on the modes localized on the left end of the wire (which transform like

the a’s), time-reversal symmetry leaves the Majorana operators invariant.

The most naive coupling term that would gap out two Majoranas is iγ1γ2. This is because

two Majoranas can form a local Hilbert space (unlike just one Majorana), and this local

Hilbert space can be split unless some other symmetry prevents it from being split. However,

time-reversal symmetry forbids these hybridization terms, for it sends iγ1γ2 → −iγ1γ2. In

spinful systems, another symmetry which can do this is MT , where M is a mirror operator

(which in spinful systems squares to −1 M2 = −1) and T is the usual time-reversal operator

T 2 = −1, such that (MT )2 = M2T 2 = 1 and hence MT acts like spinless time reversal.7

Realizing that such a term is not allowed is the end of the story for noninteracting systems,

yielding the classification Z. Lets find out what interactions do to this system. The steps

that we will now outline are summarized in Fig. 3.

We saw that two Majorana end states cannot be gapped: the only possible interacting

or noninteracting Hamiltonian is ia1a2. Three Majoranas clearly cannot be gapped either,

as it is an odd number. Let us thus add two more Majorana end states into the mix. Any

one-body term still is disallowed but the term

Hint = a1a2a3a4 (30)

can be present. We can now form two complex fermions, c1 = (a1 + ia2)/
√

2, c2 = (a3 +
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FIG. 3. Schematic illustration of the many body energy levels for 2, 4, and 8 wires with Majorana

end states as well as the (partial) lifting of their degeneracy by the Hamiltonians in Eqs. (31)

and (32).

ia4)/
√

2. In terms of these two fermions, the Hamiltonian reads

Hint = −
(
n1 −

1

2

)(
n2 −

1

2

)
, (31)

where n1 = c†1c1 and n2 = c†2c2 are the occupation numbers. The Hamiltonian is diagonal

in the eigenbasis |n1n2〉 of the occupation number operators, and the states |11〉 , |00〉 are

degenerate at energy −1/4, while the states |01〉 , |10〉 are degenerate at energy +1/4. The

original noninteracting system of four Majorana fermions had a degeneracy of 22 = 4. The

interaction, however, has lifted this degeneracy, but not all the way to a single nondegen-

erate ground state. Irrespective of the sign of the interaction, it leaves the states doubly

degenerate on one edge, and hence cannot be adiabatically continued to the trivial state of

single degeneracy. However, if we add four more Majoranas wires so that we have n = 8

Majoranas, we can build an interaction which creates a singly degenerate ground state. We

can understand this as follows: Add two interactions

H
(1)
int = −α(a1a2a3a4 + a5a6a7a8) (32a)

These create two doublets, one in c1, c2 defined above, and one in c3 = (a5 + ia6)/
√

2, c4 =

(a7 + ia8)/
√

2. We couple these doublets via the interaction

H
(2)
int =

∑

i=x,y,z

β(c†1 c†2)σi


 c1

c2


 (c†3 c†4)σi


 c3

c4


 . (32b)

Representing each of the doublets as a spin-1/2 S, this interaction is nothing but an S · S
term. If we take 0 < β � α, then we can approximate the interaction β by its action within
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the two ground state doublets. As such, this interaction creates a singlet and a triplet (in

that doublet) and for the right sign of β, we can put the singlet below the triplet, thereby

creating a unique ground state

1√
2

(|0110〉 − |1001〉) , (33)

in terms of the occupation number states |n1n2n3n4〉. This unique ground state can be

adiabatically continued to the atomic limit. In this way the noninteracting Z classification

of class BDI breaks down to Z8 if interactions are allowed.
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II. EXAMPLES OF TOPOLOGICAL ORDER

So far, we have been concerned with symmetry protected topological states and consid-

ered examples that were motivated by the topological classification of free fermion Hamilto-

nians. The topological properties of these systems are manifest by the presence of protected

boundary modes.

In this Section, we want to familiarize ourselves with the concept of intrinsic topological

order by ways of two examples. We will study the connections between different characteri-

zations of topological order, such as fractionalized excitations in the bulk and the topological

ground state degeneracy. Our examples will be in 2D space, as topologically ordered states

do not exist in 1D and are best understood in 2D. Our first example, the toric code, has

Abelian anyon excitations, while the second example, the chiral p-wave superconductor,

features non-Abelian anyons.

A. The toric code

The first example of a topologically ordered state is an exactly soluble model with van-

ishing correlation length. The significance of having zero correlation length is the following.

The correlation functions of local operators decay exponentially in gapped quantum ground

states in 1D and 2D with a characteristic length scale given by the correlation length ξ.9

In contrast, topological properties are encoded in quantized expectation values of nonlocal

operators (for example the Hall conductivity) or the degeneracy of energy levels (such as

the end states of the Su-Schrieffer-Heeger model). In finite systems, such quantizations and

degeneracies are generically only exact up to corrections that are of order e−L/ξ, where L

is the linear system size. Models with zero correlation length are free from such exponen-

tial finite-size corrections and thus expose the topological features already for the smallest

possible system sizes. The down-side is that their Hamiltonians are rather contrived.

We define the toric code model10 on a square lattice with a spin-1/2 degree of freedom on

every bond j (see Fig. 4). The four spins that sit on the bonds emanating from a given site

of the lattice are referred to as a star s. The four spins that sit on the bonds surrounding a
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As

Bp

FIG. 4. The toric code model is defined on a square lattice with spin-1/2 degrees of freedom on

every bond (black squares). The operator As acts with σx on all four spins one the bonds that

are connected to a lattice site (a star s). The operator Bp acts with σz on all four spins around a

plaquette p.

square of the lattice are called a plaquette p. We define two sets of operators

As :=
∏

j∈s
σxj , Bp :=

∏

j∈p
σzj , (34)

that act on the spins of a given star s and plaquette p, respectively. Here, σx,zj are the

respective Pauli matrices acting on the spin on bond j.

These operators have two crucial properties which are often used to construct exactly

soluble models for topological states of matter

1. All of the As and Bp commute with each other. This is trivial for all cases except

for the commutator of As with Bp if s and p have spins in common. However, any

star shares with any plaquette an even number of spins (edges), so that commuting

As with Bp involves commuting an even number of σz with σx, each of which comes

with a minus sign.

2. The operators

1−Bp

2
,

1− As
2

(35)

are projectors. The former projects out plaquette states with an even number of spins

polarized in the positive z-direction. The latter projects out stars with an even number

of spins in the positive x-direction.
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1. Ground states

The Hamiltonian is defined as a sum over these commuting projectors

H = −Je

∑

s

As − Jm

∑

p

Bp, (36)

where the sums run over all stars s and plaquettes p of the lattice. Let us assume that both

Je and Jm are positive constants. Then, the ground state is given by a state in which all

stars s and plaquettes p are in an eigenstate with eigenvalue +1 of As and Bp, respectively.

(The fact that all As and Bp commute allows for such a state to exist, as we can diagonalize

each of them separately.) Let us think about the ground state in the eigenbasis of the σx

operators and represent by bold lines those bonds with spin up and and draw no lines along

bonds with spin down. Then, As imposes on all spin configurations with nonzero amplitude

in the ground state the constraint that an even number of bold lines meets at the star s.

In other words, we can think of the bold lines as connected across the lattice and they may

only form closed loops. Bold lines that end at some star (“open strings”) are not allowed

in the ground state configurations; they are excited states. Having found out which spin

configurations are allowed in the ground state, we need to determine their amplitudes. This

can be inferred from the action of the Bp operators on these closed loop configurations. The

Bp flips all bonds around the plaquette p. Since B2
p = 1, given a spin configuration |c〉 in

the σx-basis, we can write an eigenstate of Bp with eigenvalue 1 as

1√
2

(|c〉+Bp|c〉) , (37)

for some fixed p. This reasoning can be extended to all plaquettes so that we can write for

the ground state

|GS〉 =

(∏

p

1 +Bp√
2

)
|c〉, (38)

where |c〉 is a closed loop configuration [see Fig. 5 a)]. Is |GS〉 independent of the choice of

|c〉? In other words, in the ground state unique? We will see that the answer depends on

the topological properties of the manifold on which the lattice is defined and thus reveals

the topological order imprinted in |GS〉.
To answer these questions, let us consider the system on two topologically distinct mani-

folds, the torus and the sphere. To obtain a torus, we consider a square lattice with Lx×Ly
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|GSi = + + + · · ·

a)

b) c) d) e)

FIG. 5. Visualization of the toric code ground states on the torus. a) The toric code ground state is

the equal amplitude superposition of all closed loop configurations. b)-e) Four base configurations

|c〉 entering Eq. (38) that yield topologically distinct ground states on the torus.

sites and impose periodic boundary conditions. This lattice hosts 2LxLy spins (2 per unit

cell for they are centered along the bonds). Thus, the Hilbert space of the model has di-

mension 22LxLy . There are LxLy operators As and just as many Bp. Hence, together they

impose 2LxLy constraints on the ground state in this Hilbert space. However, not all of

these constraints are independent. The relations

1 =
∏

s

As, 1 =
∏

p

Bp (39)

make two of the constraints redundant, yielding (2LxLy − 2) independent constraints. The

ground state degeneracy (GSD) is obtained as the quotient of the Hilbert space dimension

and the subspace modded out by the constraints

GSD =
22LxLy

22LxLy−2
= 4. (40)

The four ground states on the torus are distinguished by having an even or an odd number

of loops wrapping the torus in the x and y direction, respectively. Four configurations |c〉
that can be used to build the four degenerate ground states are shown in Fig. 5 b)-e).

This constitutes a set of “topologically degenerate” ground states and is a hallmark of the

topological order in the model.

Let us contrast this with the ground state degeneracy on the sphere. Since we use a

zero correlation length model, we might as well use the smallest convenient lattice with the
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topology of a sphere. We consider the model (36) defined on the edges of a cube. The

same counting as above yields that there are 12 degrees of freedom (the spins on the 12

edges), 8 constraints from the As operators defined on the corners and 6 constraints from

the Bp operators defined on the faces. Subtracting the 2 redundant constraints (39) yields

12− (8 + 6− 2) = 0 remaining degrees of freedom. Hence, the model has a unique ground

state on the sphere.

On a general manifold, we have

GSD = 2number of noncontractible loops. (41)

An important property of the topologically degenerate ground states is that any local oper-

ator has vanishing off-diagonal matrix elements between them in the thermodynamic limit.

Similarly, no local operator can be used to distinguish between the ground states. We can,

however, define nonlocal operators that transform one topologically degenerate ground state

into another and that distinguish the ground states by topological quantum numbers. (No-

tice that such operators may not appear in any physical Hamiltonian due to their nonlocality

and hence the degeneracy of the ground states is protected.) On the torus, we define two

pairs of so-called Wilson loop operators as

W e
x/y :=

∏

j∈le
x/y

σzj , Wm
x/y :=

∏

j∈lm
x/y

σxj . (42)

Here, lex/y are the sets of spins on bonds parallel to a straight line wrapping the torus

once along the x- and y-direction, respectively. The lmx/y are the sets of spins on bonds

perpendicular to a straight line that connects the centers of plaquettes and wraps the torus

once along the x and y-direction, respectively. We note that the W e
x/y and Wm

x/y commute

with all As and Bp [
W

e/m
x/y , As

]
=
[
W

e/m
x/y , Bp

]
= 0, (43)

and thus also with the Hamiltonian. Furthermore, they obey

W e
xW

m
y = −Wm

y W
e
x . (44)

This algebra must be realized in any eigenspace of the Hamiltonian. However, due to

Eq. (44), it cannot be realized in a one-dimensional subspace. We conclude that all

eigenspaces of the Hamiltonian, including the ground state, must be degenerate. In the
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a) b)

c) d)

e1 e2
m2m1

e1

e2 m
e

m
e

FIG. 6. Visualization of operations to compute the braiding statistics of toric code anyons. a)

Two e excitations above the ground state. b) Two m excitations above the ground state. c) Loop

created by braiding e1 around e2. c) Loop created by braiding e around m. A phase of −1 results

for this process because there is a single bond on which both a σx operator (dotted line) and a σz

operator (bold line) act.

σx basis that we used above, Wm
x/y measures whether the number of loops wrapping the

torus is even or odd in the x and y direction, respectively, giving 4 degenerate ground states.

In contrast, W e
x/y changes the number of loops wrapping the torus in the x and y direction

between even and odd.

2. Topological excitations

To find the topological excitations of the system above the ground state, we ask which

are the lowest energy excitations that we can build. Excitations are a violation of the rule

that all stars s are eigenstates of As and all plaquettes p are eigenstates of Bp. Let us first

focus on star excitations which we will call e. They appear as the end point of open strings,

i.e., if the closed loop condition is violated. Since any string has two end points, the lowest

excitation of this type is a pair of e. They can be created by acting on the ground state

with the operator

W e
le :=

∏

j∈le
σzj , (45)

where le is a string of bonds connecting the two excitations e1 and e2 [see Fig. 6 a)]. The

state

|e1, e2〉 := W e
le|GS〉 (46)
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has energy 4Je above the ground state energy. Similarly, we can define an operator

Wm
lm :=

∏

j∈lm
σxj , (47)

that creates a pair of plaquette defectsm1 andm2 connected by the string lm of perpendicular

bonds [see Fig. 6 b)]. (Notice that the operator Wm
lm does not flip spins when the ground state

is written in the σx basis. Rather, it gives weight +1/−1 to the different loop configurations

in the ground state, depending on whether an even or an odd number of loops crosses lm.)

The state

|m1,m2〉 := Wm
lm|GS〉 (48)

has energy 4Jm above the ground state energy. Notice that the excited states |e1, e2〉 and

|m1,m2〉 only depend on the positions of the excitations and not on the particular choice of

string that connects them. Furthermore, the energy of the excited state is independent of

the separation between the excitations. The excitations are thus “deconfined”, i.e., free to

move independent of each other.

It is also possible to create a combined defect when a plaquette hosts a m excitation and

one of its corners hosts a e excitation. We call this combined defect f and formalize the

relation between these defects in a so-called fusion rule

e×m = f. (49a)

When two e-type excitations are moved to the same star, the loop le that connects them

becomes a closed loop and the state returns to the ground state. For this, we write the

fusion rule

e× e = 1, (49b)

where 1 stands for the ground state or vacuum. Similarly, moving two m-type excitations

to the same plaquette creates a closed loop lm, which can be absorbed in the ground state,

i.e.,

m×m = 1. (49c)

Superimposing the above processes yields the remaining fusion rules

m× f = e, e× f = m, f × f = 1. (49d)

It is now imperative to ask what type of quantum statistics these emergent excitations

obey. We recall that quantum statistics are defined as the phase by which a state changes if
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two identical particles are exchanged. Rendering the exchange operation as an adiabatically

slow evolution of the state, in three and higher dimensions only two types of statistics are

allowed between point particles: that of bosons with phase +1 and that of fermions with

phase −1. In 2D, richer possibilities exist and the exchange phase θ can be any complex

number on the unit circle, opening the way for anyons. While the exchange is only defined for

quantum particles of the same type, the double exchange (braiding) is well defined between

any two deconfined anyons. We can compute the braiding phases of the anyons e, m, and f

that appear in the toric code one by one. Let us start with the phase resulting from braiding

e1 with e2. The initial state is W e
le|GS〉 depicted in Fig. 6 a). Moving e1 around e2 leaves a

loop of flipped σx bonds around e2 [see Fig. 6 c)]. This loop is created by applying Bp to all

plaquettes enclosed by the loop lee1 along which e1 moves. We can thus write the final state

as

∏

p∈lee1

Bp


W e

le|GS〉 =W e
le


∏

p∈lee1

Bp


 |GS〉

=W e
le|GS〉.

(50)

Flipping the spins in a closed loop does not alter the ground state as it is the equal amplitude

of all loop configurations. We conclude that the braiding of two e particles gives no phase.

Similar considerations can be used to conclude that the braiding of two m particles is trivial

as well. In fact, not only the braiding, but also the exchange of two e particles and two m

particles is trivial. (We have not shown that here.)

More interesting is the braiding of m with e. Let the initial state be Wm
lmW

e
le|GS〉 and

move the e particle located on one end of the string lein around the magnetic particle m on

one end of the string lm. Again this is equivalent to applying Bp to all plaquettes enclosed

by the path lee of the e particle, so that the final state is given by

∏

p∈lee

Bp


Wm

lmW
e
le|GS〉 = −Wm

lm


∏

p∈lee

Bp


W e

le|GS〉

= −Wm
lmW

e
le|GS〉.

(51)

The product over Bp operators anticommutes with the path operator Wm
lm , because there

is a single bond on which a single σx and a single σz act at the crossing of lm and lee [see

Fig. 6 d)]. As a result, the initial and final state differ by a −1, which is the braiding phase

of e with m. Particles with this braiding phase are called (mutual) semions.
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Notice that we have moved the particles on contractible loops only. If we create a pair of e

orm particles, move one of them along a noncontractible loop on the torus, and annihilate the

pair, we have effectively applied the operators W e
x/y and Wm

x/y to the ground state (although

in the process we have created finite energy states). The operation of moving anyons on

noncontractible loops thus allows to operate on the manifold of topologically degenerate

groundstates. This exposes the intimate connection between the presence of fractionalized

excitations and topological groundstate degeneracy in topologically ordered systems.

From the braiding relations of e and m we can also conclude the braiding and exchange

relations of the composite particle f . This is most easily done in a pictorial way by repre-

senting the particle worldlines as moving upwards. For example, we represent the braiding

relations of e and m as

e e e

=

e

=

m m m m

ti
m

e

e m e m

= � . (52)

The exchange of two f , each of which is composed of one e and one m is then

e m eme m em

=

e m

= �

m e|{z}
f

|{z}
f

(53)

Notice that we have used Eq. (52) to manipulate the crossing in the dotted rectangles.

Exchange of two f thus gives a phase −1 and we conclude that f is a fermion.

In summary, we have used the toric code model to illustrate topological ground state

degeneracy and emergent anyonic quasiparticles as hallmarks of topological order. We note

that the toric code model does not support topologically protected edge states.

B. The two-dimensional p-wave superconductor

The second example of a 2D system with anyonic excitations that we want to discuss

here is the chiral p-wave superconductor. Unlike the toric code, due to its chiral nature, it is
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a model with nonzero correlation length. The vortices of the chiral p-wave superconductor

exhibit anyon excitations which have exotic non-Abelian statistics.12–14 (The anyons in the

toric code are Abelian, we will see below what that distinction refers to.) For the system to

be topologically ordered, these vortices should appear as emergent, dynamical excitations.

This requires to treat the electromagnetic gauge field quantum-mechanically. (In fact, since

the fermion number conservation is spontaneously broken down to the conservation of the

fermion parity in the superconductor, the relevant gauge theory involves only a Z2 instead

of a U(1) gauge field.) However, the topological properties that we want to discuss here

can also be seen if we model the gauge field and vortices as static defects, rather than

within a fluctuating Z2 gauge theory. This allows us to study a models very similar to

the “noninteracting” topological superconductor in 1D and still expose the non-Abelian

statistics.

For pedagogy we will use both lattice and continuum models of the chiral superconductor.

We begin with the lattice Hamiltonian defined on a square lattice

H =
∑

m,n

{
−t
(
c†m+1,ncm,n + c†m,n+1cm,n + h.c.

)
− (µ− 4t)c†m,ncm,n

+
(

∆c†m+1,nc
†
m,n + i∆c†m,n+1c

†
m,n + h.c.

)}
.

(54)

The fermion operators cm,n annihilate fermions on the lattice site (m,n) and we are consid-

ering spinless (or equivalently spin-polarized) fermions. We set the lattice constant a = 1

for simplicity. The pairing amplitude is anisotropic and has an additional phase of i in the

y-direction compared to the pairing in the x-direction. Because the pairing is not on-site,

just as in the lattice version of the p-wave wire, the pairing terms will have momentum de-

pendence. We can write this Hamiltonian in the Bogoliubov-deGennes form and, assuming

that ∆ is translationally invariant, can Fourier transform the lattice model to get

HBdG =
1

2

∑

p

Ψ†p


 ε(p) 2i∆(sin px + i sin py)

−2i∆∗(sin px − i sin py) −ε(p)


Ψp, (55)

where ε(p) = −2t(cos px + cos py)− (µ− 4t) and Ψp =
(
cp c†−p

)T
. For convenience we have

shifted the chemical potential by the constant 4t. As a quick aside we note that the model

takes a simple familiar form in the continuum limit (p→ 0):

H
(cont)
BdG =

1

2

∑

p

Ψ†p




p2

2m
− µ 2i∆(px + ipy)

−2i∆∗(px − ipy) − p2

2m
+ µ


Ψp (56)

35



where m ≡ 1/2t and p2 = p2
x + p2

y. We see that the continuum limit has the characteristic

px + ipy chiral form for the pairing potential. The quasiparticle spectrum of H
(cont)
BdG is

E± = ±
√

(p2/2m− µ)2 + 4|∆|2p2, which, with a nonvanishing pairing amplitude, is gapped

across the entire BZ as long as µ 6= 0. This is unlike some other types of p-wave pairing

terms [e.g., ∆(p) = ∆px] which can have gapless nodal points or lines in the BZ for µ > 0.

In fact, nodal superconductors, having gapless quasiparticle spectra, are not topological

superconductors by definition (i.e., a bulk excitation gap does not exist).

We recognize the form of H
(cont)
BdG as a massive 2D Dirac Hamiltonian, and indeed Eq. (54)

is just a lattice Dirac Hamiltonian which is what we will consider first. In the first quantized

notation, the single particle Hamiltonian for a superconductor is equivalent to that of an

insulator with an additional particle-hole symmetry. It is thus placed in class D of Tab. I

and admits a Z topological classification in 2D. Thus, we can classify the eigenstates of

Hamiltonian (54) by a Chern number – but due to the breaking of U(1) symmetry, the

Chern number does not have the interpretation of Hall conductance. However, it is still a

topological invariant.

We expect that HBdG will exhibit several phases as a function of ∆ and µ for a fixed t > 0.

For simplicity let us set t = 1/2 and make a gauge transformation cp → eiθ/2cp, c
†
p → e−iθ/2c†p

where ∆ = |∆|eiθ. The Bloch Hamiltonian for the lattice superconductor is then

HBdG(p) = (2− µ− cos px − cos py)σz − 2|∆| sin pxσy − 2|∆| sin pyσx, (57)

where the σi, i = x, y, z, are the Pauli matrices in the particle/hole basis. Assuming

|∆| 6= 0, this Hamiltonian has several fully-gapped superconducting phases separated by

gapless critical points. The quasi-particle spectrum for the lattice model is

E± = ±
√

(2− µ− cos px − cos py)
2 + 4|∆|2 sin2 px + 4|∆|2 sin2 py (58)

and is gapped (under the assumption that |∆| 6= 0) unless the prefactors of all three Pauli

matrices vanish simultaneously. As a function of (px, py, µ) we find three critical points.

The first critical point occurs at (px, py, µ) = (0, 0, 0). The second critical point has two

gap-closings in the BZ for the same value of µ : (π, 0, 2) and (0, π, 2). The third critical

point is again a singly degenerate point at (π, π, 4). We will show that the phases for µ < 0

and µ > 4 are trivial superconductors while the phases 0 < µ < 2 and 2 < µ < 4 are

topological superconductors with opposite chirality. In principle one can define a Chern
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number topological invariant constructed from the eigenstates of the lower quasi-particle

band to characterize the phases. We will show this calculation below, but first we make

some physical arguments as to the nature of the phases, following the discussion in Ref. 11.

We will first consider the phase transition at µ = 0. The low-energy physics for this

transition occurs around (px, py) = (0, 0) and so we can expand the lattice Hamiltonian

around this point; this is nothing but Eq. (56). One way to test the character of the µ < 0

and µ > 0 phases is to make an interface between them. If we can find a continuous

interpolation between these two regimes which is always gapped then they are topologically

equivalent phases of matter. If we cannot find such a continuously gapped interpolation

then they are topologically distinct. A simple geometry to study is a domain wall where

µ = µ(x) such that µ(x) = −µ0 for x < 0 and µ(x) = +µ0 for x > 0 for a positive constant

µ0. This is an interface which is translationally invariant along the y-direction, and thus we

can consider the momentum py as a good quantum number to simplify the calculation. What

we will now show is that there exist gapless, propagating fermions bound to the interface

which prevent us from continuously connecting the µ < 0 phase to the µ > 0 phase. This is

one indication that the two phases represent topologically distinct classes.

The single-particle Hamiltonian in this geometry is

HBdG(py) =
1

2


 −µ(x) 2i|∆|

(
−i d

dx
+ ipy

)

−2i|∆|
(
−i d

dx
− ipy

)
µ(x)


 , (59)

where we have ignored the quadratic terms in p, and py is a constant parameter, not an op-

erator. This is a quasi-1D Hamiltonian that can be solved for each value of py independently.

We propose an ansatz for the gapless interface states:

|ψpy(x, y)〉 = eipyy exp

(
− 1

2|∆|

∫ x

0

µ(x′)dx′
)
|φ0〉 (60)

for a constant, normalized spinor |φ0〉. The secular equation for a zero-energy mode at py = 0

is

HBdG(py)|ψ0(x, y)〉 = 0 =⇒


 −µ(x) −µ(x)

µ(x) µ(x)


 |φ0〉 = 0. (61)

The constant spinor which is a solution of this equation is |φ0〉 = 1/
√

2 (1,−1)T . This form

of the constant spinor immediately simplifies the solution of the problem at finite py. We see

that the term proportional to py in Eq. (59) is −2|∆|pyσx. Since σx|φ0〉 = −|φ0〉, i.e., the

solution |φ0〉 is an eigenstate of σx, we conclude that |ψpy(x, y)〉 is an eigenstate of HBdG(py)
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with energy E(py) = −2|∆|py. Thus, we have found a normalizable bound state solution at

the interface of two regions with µ < 0 and µ > 0 respectively. This set of bound states,

parameterized by the conserved quantum number py is gapless and chiral, i.e., the group

velocity of the quasiparticle dispersion is always negative and never changes sign (in this

simplified model). The chirality is determined by the sign of the “spectral” Chern number

mentioned above which we will calculate below.

These gapless edge states have quite remarkable properties and are not the same chiral

complex fermions that propagate on the edge of integer quantum Hall states, but chiral real

(Majorana) fermions. Using Clifford algebra representation theory it can be shown that

the so-called chiral Majorana (or Majorana-Weyl) fermions can only be found in spacetime

dimensions (8k+ 2), where k = 0, 1, 2, · · · . Thus, we can only find chiral-Majorana states in

(1 + 1) dimensions or in (9 + 1) dimensions (or higher!). In condensed matter, we are stuck

with (1 + 1) dimensions where we have now seen that they appear as the boundary states

of chiral topological superconductors. The simplest interpretation of such chiral Majorana

fermions is as half of a conventional chiral fermion, i.e., its real or imaginary part. To show

this, we will consider the edge state of a Chern number 1 quantum Hall system for a single

edge

H(QH)
edge = ~v

∑

p

p η†pηp, (62)

where p is the momentum along the edge. The fermion operators satisfy
{
η†p, ηp′

}
= δpp′ .

Similar to the discussion on the 1D superconducting wire we can decompose these operators

into their real and imaginary Majorana parts

ηp =
1

2
(γ1,p + iγ2,p), η†p =

1

2
(γ1,−p − iγ2,−p), (63)

where γa,p (a = 1, 2) are Majorana fermion operators satisfying γ†a,p = γa,−p and
{
γa,−p, γb,p′

}
=
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2δabδpp′ . The quantum Hall edge Hamiltonian now becomes

H(QH)
edge =~v

∑

p≥0

p(η†pηp − η†−pη−p)

=
~v
4

∑

p≥0

p {(γ1,−p − iγ2,−p)(γ1,p + iγ2,p)− (γ1,p − iγ2,p)(γ1,−p + iγ2,−p)}

=
~v
4

∑

p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p − γ1,pγ1,−p − γ2,pγ2,−p)

=
~v
2

∑

p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p − 2) .

(64)

Thus

H(QH)
edge =

~v
2

∑

p≥0

p (γ1,−pγ1,p + γ2,−pγ2,p) (65)

up to a constant shift of the energy. This Hamiltonian is exactly two copies of a chiral

Majorana Hamiltonian. The edge/domain-wall fermion Hamiltonian of the chiral p-wave

superconductor will be

H(p−wave)
edge =

~v
2

∑

p≥0

pγ−pγp. (66)

Finding gapless states on a domain wall of µ is an indicator that the phases with µ > 0

and µ < 0 are distinct. If they were the same phase of matter we should be able to

adiabatically connect these states continuously. However, we have shown a specific case of

the more general result that any interface between a region with µ > 0 and a region with

µ < 0 will have gapless states that generate a discontinuity in the interpolation between

the two regions. The question remaining is: Is µ > 0 or µ < 0 non-trivial? The answer is

that we have a trivial superconductor for µ < 0 (adiabatically continued to µ → −∞) and

a topological superconductor for µ > 0. Remember that for now we are only considering µ

in the neighborhood of 0 and using the continuum model expanded around (px, py) = (0, 0).

We will now define a bulk topological invariant for 2D superconductors that can distinguish

the trivial superconductor state from the chiral topological superconductor state. For the

spinless Bogoliubov-deGennes Hamiltonian, which is of the form

HBdG =
1

2

∑

p

Ψ†p [d(p, µ) · σ] Ψp, (67a)

d(p, µ) =
(
−2|∆|py,−2|∆|px, p2/2m− µ

)
, (67b)

the topological invariant is the spectral Chern number defined in Eq. (11), which simplifies,
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for this Hamiltonian, to the winding number

C(1) =
1

8π

∫
d2p εij d̂ ·

(
∂pid̂× ∂pj d̂

)
=

1

8π

∫
d2p

εij

|d|3 d ·
(
∂pid× ∂pjd

)
. (68)

We defined the unit vector d̂ = d/|d|, which is possible since |d| 6= 0 due to the existence

of a gap. This integral has a special form and is equal to the degree of the mapping from

momentum space onto the 2-sphere S2 given by d̂2
1 + d̂2

2 + d̂2
3 = 1. As it stands, the degree

of the mapping d̂ : R2 → S2 is not well-defined because the domain is not compact, i.e.,

(px, py) is only restricted to lie in the Euclidean plane (R2). However, for our choice of the

map d̂ we can define the winding number by choosing an equivalent, but compact, domain.

To understand the necessary choice of domain we can simply look at the explicit form of

d̂(p)

d̂(p) =
(−2|∆|py,−2|∆|px, p2/2m− µ)√

4|∆|2p2 + (p2/2m− µ)2
. (69)

We see that lim|p|→∞ d̂(p) = (0, 0, 1) and it does not depend on the direction in which we

take the limit in the 2D plane. Because of the uniqueness of this limit we are free to perform

the one-point compactification of R2 which amounts to including the point at infinity in our

domain. The topology of R2 ∪ {∞} is the same as S2 and thus we can consider the degree

of our map from the compactified momentum space (S2) to the unit d̂-vector space (S2).

Using the explicit form of the d̂-vector for this model, we find

C(1) =
1

π

∫
d2p

|∆|2
(
p2

2m
+ µ
)

[
4|∆|2p2 +

(
p2

2m
− µ

)2
]3/2

. (70)

The evaluation of this integral can be easily carried out numerically. The result is C(1) = 0

for µ < 0 and C(1) = 1 for µ > 0, i.e., there are two different phases separated by a

quantum critical point at µ = 0. Thus we have identified the phase which is in the chiral

superconductor state to be µ > 0.

1. Argument for the existence of Majorana bound states on vortices

A simple but rigorous argument can show us the presence of zero energy bound states in

the core of vortices in a superconductor. Assume we have a chiral (p+ip) superconductor in

two geometries: a disk with an edge and a cylinder with two edges. Since it is a topological
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Figure 10: Spectra of a Chiral superconductor in di↵erent geometries

This means that the antiperiodic boundary condition on the edge before the
vortex changes to periodic boundary condition in the presence of the vortex.
The spectrum on the edge then is translated by ⇡/L compared to the case
without the vortex, making it have an energy level at k = 0, E = 0. This
would mean that the spectrum has an odd number of levels. However, this
cannot be true, as we explained above, since the number of levels is always
even. We are hence missing one un-paired level. Where is it? Since the
only di↵erence from the case with no vortex is the vortex itself, we draw
the conclusion that teh missing level is associated with the vortex, and is
a bound-state on the vortex. We also draw the conclusion that, since it
is unpaired, it has to rest exactly at E = 0, thereby showing that chiral
superconductors have Majorana zero modes in their vortex core.

1.7.1 Bound states on vortices in 2D Chiral p-wave superconduc-
tors

We have seen that on domains between regions of chiral superconductors
with µ < 0 and µ > 0 there exist chiral Majorana states propagating on
the interfaces. For the linear interface we found an exact zero mode solution
accompanied by a set of propagating modes. The propagating modes will be
separated by an energy gap if there is finite-size quantization due to a finite
interface length. For a closed system with periodic boundary conditions
there have to exist an even number of linear domain walls, and thus an even
number of isolated Majorana zero modes. This is important because we are
formulating this problem in terms of the BdG Hamiltonian which strictly
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FIG. 7. Spectra of a Chiral superconductor in different geometries: (a) disk, (b) cylinder, and (c)

disk with flux defect. Shown are the spectra of the chiral topological boundary modes including

their finite-size quantization with level spacing v2π/L. If a π flux is inserted in the disk geometry

(c), it binds an isolated zero-energy state. At the same time, a single zero-energy state appears on

the edge.

superconductor, the system will have chiral dispersing (Majorana) gapless modes along the

edges. In Fig. 7, the spectra are plotted versus the momentum along the edge, and they are

qualitatively very different in the two cases. For an edge of length L, the smallest difference

between two momenta along the edge is 2π/L. The energy difference between two levels is

v2π/L, where v is the velocity of the edge mode.

In a single particle superconducting Hamiltonian the number of total single-particle eigen-

values is always even. This is clear from the fact that whatever the spinor of the nonsuper-

conducting Hamiltonian is, when superconductivity is added, we have a doubled spectrum,

so that every energy state at E > 0 comes with a counterpart at energy −E. When labeled

by momentum quantum number, for a system with just one edge, like the disk, there cannot

be a single state at momentum p = 0 at energy E = 0. If such a state was there, the

spectrum would contain an odd number of states. Hence the spectrum of the linearized

edge mode cannot have a state at E = 0, p = 0 on the disk. The one way to introduce

such a state is to have antiperiodic boundary conditions, with the spectrum of the edge

being at momenta π(2n+ 1)/L, n ∈ Z. On the cylinder, as two edges are present, periodic

boundary conditions are allowed (as are antiperiodic, which can be obtained by threading a

flux through the cylinder).

We now add a single vortex inside the disk, far away from the edge of the disk. What is
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the influence of the vortex on the edge? The vortex induces a phase 2π in the units of the

superconducting quantum hc/2e, which means that the phase of ∆ changes by 2π, and that

of the electronic operators by π upon a full rotation around the edge. This implies that the

antiperiodic boundary conditions on the edge without vortex changes to periodic boundary

conditions in the presence of the vortex. The spectrum on the edge then is translated by π/L

compared to the case without the vortex, making it have an energy level at p = 0, E = 0.

This would mean that the spectrum has an odd number of levels. However, this cannot be

true, as we explained above, since the number of levels is always even. We are hence missing

one unpaired level. Where is it? Since the only difference from the case with no vortex is

the vortex itself, we draw the conclusion that the missing level is associated with the vortex,

and is a bound state on the vortex. We also draw the conclusion that, since it is unpaired

and really bound to the vortex, it has to rest exactly at E = 0, thereby showing that chiral

superconductors have Majorana zero modes in their vortex core.

2. Bound states on vortices in two-dimensional chiral p-wave superconductors

Let us explicitly show that a vortex in a chiral superconductor will contain a zero

mode.12,13,15 For this calculation, which is a variant of our calculation for the existence

of a Majorana mode at the interface between a topological and a trivial superconductor, we

follow the discussion in Ref. 11. For this construction consider a disk of radius R which has

µ > 0 surrounded by a region with µ < 0 for r > R. We know from our previous discussion

that there will be a single branch of chiral Majorana states localized near r = R, but no

exact zero mode. If we take the limit R→ 0 this represents a vortex and all the low-energy

modes on the interface will be pushed to higher energies. If we put a π-flux inside the trivial

region it will change the boundary conditions such that even in the R → 0 limit there will

be a zero-mode in the spectrum localized on the vortex.

Now let us take the Bogoliubov-deGennes Hamiltonian in the Dirac limit (m→∞) and

solve the Bogoliubov-deGennes equations in the presence of a vortex located at r = 0 in

the disk geometry in polar coordinates. Let ∆(r, θ) = |∆(r)|eiα(r). The profile |∆(r)| for

a vortex will depend on the details of the model, but must vanish inside the vortex core

region, e.g., for an infinitely thin core we just need |∆(0)| = 0. We take the phase α(r) to

be equal to the polar angle at r.
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The first step in the solution of the bound state for this vortex profile is to gauge transform

the phase of ∆(r, θ) into the fermion operators via Ψ(r) → eiα(r)/2Ψ(r). This has two

effects: (i) it simplifies the solution of the Bogoliubov-deGennes differential equations and (ii)

converts the boundary conditions of Ψ(r) from periodic to anti-periodic around the vortex

position r = 0. In polar coordinates the remaining single-particle Bogoliubov-deGennes

Hamiltonian is simply

HBdG =
1

2


 −µ 2|∆(r)|eiθ

(
∂
∂r

+ i
r
∂
∂θ

)

−2|∆(r)|e−iθ
(
∂
∂r
− i

r
∂
∂θ

)
µ


 . (71)

We want to solve HBdGΨ = EΨ = 0 which we can do with the ansatz

Ψ0(r, θ) =
i√
rN exp

[
−1

2

∫ r

0

µ(r′)

|∆(r′)|dr
′
]
 −e

iθ/2

e−iθ/2


 ≡ ig(r)


 −e

iθ/2

e−iθ/2


 , (72)

where N is a normalization constant. The function g(r) is localized at the location of the

vortex. We see that Ψ0(r, θ + 2π) = −Ψ0(r, θ) as required. From an explicit check one

can see that HBdGΨ0(r, θ) = 0. The field operator which annihilates fermion quanta in this

localized state is

γ =

∫
rdrdθ ig(r)

[
−eiθ/2c(r, θ) + e−iθ/2c†(r, θ)

]
, (73)

from which we can immediately see that γ = γ†. Thus the vortex traps a single Majorana

bound state at zero-energy.

3. Non-Abelian statistics of vortices in chiral p-wave superconductors

We have shown in the last Section that on each vortex in a spinless chiral superconductor

there exists a single Majorana bound state. If we have a collection of 2N vortices which are

well-separated from each other, a low-energy subspace is generated which in the thermody-

namic limit leads to a ground state degeneracy of 2N .16,17 For example, two vortices give a

degeneracy of 2, which can be understood by combining the two localized Majorana bound

states into a single complex fermion state which can be occupied or un-occupied, akin to the

end states of the superconducting wire. From 2N vortices one can form N complex fermion

states giving a degeneracy of 2N , which can be broken up into the subspace of 2N−1 states

with even fermion parity and the 2N−1 states with odd fermion parity. As an aside, since
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FIG. 8. Illustration of the exchange of two vortices in a chiral p-wave superconductor. The dotted

lines represent branch cuts across which the phase of the superconducting order parameter jumps

by 2π.

we have operators that mutually anti-commute and square to +1 we can define a Clifford

algebra operator structure using the set of 2N γi.

To illustrate the statistical properties of the vortices under exchanges we closely follow

the work of Ivanov14 and the discussion in Ref. 11. Let us begin with a single pair of vortices

which have localized Majorana operators γ1 and γ2 respectively and are assumed to be well

separated. We imagine that we adiabatically move the vortices in order to exchange the two

Majorana fermions. If we move them slow enough then the only outcome of exchanging the

vortices is a unitary operator acting on the two degenerate states which make up the ground

state subspace. If we exchange the two vortices then we have γ1 → γ2 and γ2 → γ1. However

if we look at Fig. 8 we immediately see there is a complication. In this figure we have

illustrated the exchange of two vortices and the dotted lines represent branch cuts across

which the phase of the superconductor order parameter jumps by 2π. Since our solution of

the Majorana bound states used the gauge transformed fermion operators we see that the

bound state on the red vortex, which passes through the branch cut of the blue vortex, picks

up an additional minus sign upon exchange. Thus the exchange of two vortices is effected

by

γ1 → γ2, γ2 → −γ1. (74)

In general, if we have 2N vortices, we can think of the different exchange operators Tij(γa)

which for our choice of conventions send γi → γj, γj → −γi, and γk → γk for all k �= i, j.

We can construct a representation of this exchange process on the Hilbert space by finding
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a τ(Tij) such that τ(Tij)γaτ
−1(Tij) = Tij(γa). Such a representation is given by

τ(Tij) = exp
(π

4
γjγi

)
=

1√
2

(1 + γjγi) . (75)

Let us prove this by showing an explicit example for T12, which will have the transformation

given in Eq. (74),

τ(T12)γ1τ
−1(T12) =

1

2
(γ1 − γ1γ2γ1 + γ2 − γ1) = γ2, (76a)

τ(T12)γ2τ
−1(T12) =

1

2
(γ2 − γ1 + γ2γ1γ2 − γ2) = −γ1, (76b)

τ(T12)γ3τ
−1(T12) = γ3τ(T12)τ−1(T12) = γ3. (76c)

Now that we have this representation we can illustrate the non-Abelian statistics. We

start with four vortices with Majorana operators γ1, γ2, γ3, γ4. To illustrate the action of the

exchange operators on the four-fold degenerate ground state space we need to pair these

Majorana operators into complex fermions

a =
1

2
(γ1 + iγ2), a† =

1

2
(γ1 − iγ2),

b =
1

2
(γ3 + iγ4), b† =

1

2
(γ3 − iγ4).

(77)

The basis vectors of the ground state subspace can now be written as

{|0〉a ⊗ |0〉b, |1〉a ⊗ |1〉b, |1〉a ⊗ |0〉b, |0〉a ⊗ |1〉b}, (78)

where we have ordered the basis so that states of the same fermion parity are together. The

notation |n〉a,b means, a†a |n〉a = n|n〉a and b†b |n〉b = n|n〉b. The set of statistical exchanges

is generated by T12, T23, T34 and we want to understand how these exchanges act on the

ground state subspace. We can rewrite these three operators as

τ(T12) =
1√
2

(1 + γ2γ1) =
1√
2

[
1− i(aa† − a†a)

]
(79a)

τ(T23) =
1√
2

[
1− i(ba− ba† + b†a− b†a†)

]
(79b)

τ(T34) =
1√
2

[
1− i(bb† − b†b)

]
(79c)

Taking matrix elements in our chosen ground state basis Eq. (78) we find

τ(T12) =
1√
2




(1− i) 0 0 0

0 (1 + i) 0 0

0 0 (1 + i) 0

0 0 0 (1− i)




(80a)
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τ(T23) =
1√
2




1 −i 0 0

i 1 0 0

0 0 1 −i

0 0 i 1




(80b)

τ(T34) =
1√
2




(1 + i) 0 0 0

0 (1− i) 0 0

0 0 (1− i) 0

0 0 0 (1 + i)




(80c)

We see that with our basis choice T12 and T34 are Abelian phases acting on each state, while

T23 exhibits non-trivial mixing terms between the states with the same fermion parity. Thus,

the form of T23 represents non-Abelian statistics. Given an initial state |ψin〉 = |0〉a ⊗ |0〉b,
if we take vortex 2 around vortex 3 the final state is |ψf〉 = 1√

2
(|0〉a ⊗ |0〉b + i|1〉a ⊗ |1〉b) . In

principle one must also keep track of the Berry phase contribution to the statistical phase.

Here we have only considered the wave function monodromy, however it can be proven

that the Berry phase does not contribute in this case. The field of topological quantum

computation is built on the idea that such exchange or braiding operations will lead to non-

trivial quantum evolutions of the ground state which can be used for quantum computations.

4. The 16-fold way

We have now noticed that there are two characterizations of a topological superconductor,

but they are seemingly different. First, the spectral Chern number is an integer C(1) ∈ Z.

Directly related to it is the number of chiral Majorana modes on the edge, which in turn

is related to an experimental observable, the thermal conductivity on the edge. Hence the

system has a Z index, which becomes obvious when an edge exists. We then saw that a

(p+ip) superconductor (i.e., a topological superconductor with Chern number equal to one)

with a vortex threaded through it exhibits a Majorana zero energy mode at the core of

the vortex. A (d + id) superconductor, with Chern number equal to 2, would exhibit two

Majorana modes in the core of the vortex. However, those two Majorana modes would be

unstable towards single particle hybridization terms, which would push them away from

zero energy, and leave the core of the vortex with no states in it. The generalization tells

us that an even Chern number topological superconductor has no Majorana zero modes in
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the vortex while an odd Chern number topological superconductor has one Majorana zero

mode in its core. This shows that the defects (vortices) in a topological superconductor are

classified by a Z2 number (C(1) mod 2).

We now show that there is a third classification related to the idea of topological order.18

In the absence of an edge and in the absence of vortex defects, there is a Z16 classification of

topological superconductors indexed by C(1) mod 16, which can be put on solid grounds by

the formalism of topological quantum field theory (TQFT) that we will introduce in the next

Section. This shows that the edge-bulk correspondence needs revisiting – the bulk does not

know if we add 16 edge modes or not, and hence that the edge contains more information

than the bulk.19 We first give a simple argument for the existence of a Z16 classification.

We ask how we can classify the system in the absence of an edge. One way would be to

compute the phases that wavefunctions can ackquire upon taking particles or quasiparticles

around each other. However, the system is made out of electrons (its a superconductor),

so usually nothing special can happen to phases of electrons. The only “special” excitation

of the superconductor is a vortex, so we will look at the phase that two vortices acquire

upon exchange. We can calculate this with an argument. Take two copies of the (p + ip)

superconductor governed by the Hamiltonian

H =
i

4

∑

j,k

Ajk(γ1,jγ1,k + γ2,jγ2,k), (81)

written in terms of Majorana operators γ1,j for one copy and γ2,j for the other copy. These

operators can be combined into an complex fermion cj = (γ1,j + iγ2,j)/2 in terms of which

the Hamiltonian becomes

H = i
∑

j,k

Ajkc
†
jck. (82)

This Hamiltonian has a “fake” U(1) symmetry given by our choice of Ajk for both Hamil-

tonians. (Since the system is gapped, we expect our universal conclusions to hold even

when this symmetry is stripped away). Thus, the system is a quantum Hall state of Hall

conductance C(1) (in units of e2/h) if each of the superconductors had Chern number C(1).

We now ask what happens when we thread a superconducting vortex h/2e, which is equal

to π. Threading a flux 2π in a quantum Hall state of Chern number C(1) pulls C(1) electron

charges to the vortex core through the Hall effect, hence a π flux pulls C(1)/2 electron charges

towards the core. We then try to compute the phase acquired when a vortex is exchanged
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with another vortex. This is an exchange process, which is half a braid. A braid of two vor-

tices is equivalent to C(1)/2 electrons braided with a π vortex, giving rise to a phase πC(1)/2

upon a braid, and πC(1)/4 under exchange. Since this is the phase for exchange of vortices in

two exactly identical superimposed superconductors, the phase for exchange in one of them

is half that, πC(1)/8 = 2πC(1)/16. This shows that the phase for vortex exchange is defined

only mod 16.

We will show this more rigorously within the framework of TQFT that we will introduce

axiomatically in the next Section. Before doing so, let us summarize what we have learned

about the vortices in chiral superconductors with odd Chern number in a language that

anticipates the formalism that we will introduce. We have seen that well-separated vortices

hold a Majorana zero mode at their core. When these vortices come together, the two

Majorana modes hybridize and split, giving rise to two states which differ by their fermion

parity. Let us call the Bogoliubov-deGennes vacuum 1 and the Bogoliubov quasiparticle ψ,

and the Majorana fermion of the vortex σ. We can then formalize the fusion of two vortices

by writing down a fusion rule

σ × σ = 1 + ψ, (83)

which basically tells us that combining two Majoranas can either go to a state with no

fermion or at one with a fermion – the fermion parity (and density) would be different for

the two states. Which one it is depends on the microscopics of the model. Hence a quantum

state of two Majoranas has to be described by another quantum number, which describes the

“fusion channel” of those two Majoranas – either the vacuum or the Bogoliubov quasiparticle.

The fusion rule (83) allows for multiple fusion channels unlike the fusion rules (49) that we

deduced for the toric code. This difference is a manifestation of the fact that the Majoranas

are non-Abelian anyons, while the toric code anyons are Abelian. When two Bogoliubov

quasiparticles fuse, they condense (form a Cooper pair) and go to the vacuum

ψ × ψ = 1, (84)

while the fusion of a Bogoliubov and a Majorana quasiparticle basically creates another

Majorana

ψ × σ = σ. (85)

This can be rationalized by thinking of the complex Bogoliubov quasiparticle as made out

of two Majoranas which then couple to the third Majorana. The Hamiltonian is a 3 × 3
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antisymmetric matrix that necessarily has a zero eigenvalue which is another Majorana

fermion coming as a result of the fusion.

III. CATEGORY THEORY

So far, we tried to gain some intuition about topologically ordered phases of matter by

ways of examples. In this Section, we are going to define a framework that describes topo-

logical order in 2D space in a unified and axiomatic way. At the same time, our description

strips all nonuniversal details off the problem. A field theory with these properties is known

as a topological field theory. It does not contain any information about energy scales of the

problem.

The topological field theory that we study is based on the mathematical concepts of

category theory.18,20,21 We will, however, try to keep the description as light as possible. For

our purpose, we can view category theory as a generalization of group theory which is based

on the fusion rules between anyon species that we have already encountered in examples.

Consistent implementation of fusion defines a fusion category. Subsequently, we can impose

more structure on the fusion category which elevates it to a braiding category, or a braided

tensor fusion category. Our presentation will follow Refs. 18 and 21, while giving more

examples of the use of the theory.

A. Fusion Category

A fusion category is based on a finite number of topological sectors (also called anyons,

topological charges, or simply particles) which we will label

a, b, c, · · · . (86)

For every charge a there exists a unique conjugate charge or anti-particle, that we denote

by ā. It is possible that an anyon is its own antiparticle a = ā (for example the Majorana

σ). There exists a unique vacuum sector denoted 1 (or sometimes 0). The fusion category

is defined by its fusion rules

a× b =
∑

c

N c
ab c, (87)
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where N c
ab ∈ Z+ are nonnegative integers. We have already encountered two examples of

fusion rules in the previous Section, namely the toric code with charges 1, e, m, and f ,

1× e = e, 1×m = m, 1× f = f,

e×m = f, e× f = m, m× f = e,

e× e = 1, m×m = 1, f × f = 1,

(88)

and the so-called Ising anyon theory that we found realized by Majorana fermions in a chiral

p-wave superconductor with charges 1, σ, and Ψ,

1× σ = σ, 1× ψ = ψ

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1.
(89)

A principal difference between Eq. (88) and Eq. (89) is that the former has always only

one fusion product on the righthand side, while the fusion of two σ in the latter produces

two outcomes. Hence, the ×-product in the toric code can still be thought of as a group

operation, while this is not possible in the Ising theory. We will see that this distinction

coincides with the notion of an Abelian theory (toric code) and a non-Abelian theory (Ising).

Does any choice of fusion rules, i.e., N c
ab ∈ Z+, define a permissible fusion category? The

answer to this question is negative, as we have to impose the following conditions on a fusion

category.

• The fusion rules be commutative

a× b = b× a ⇒ N c
ab = N c

ba. (90)

• The fusion rules be associative

(a× b)× c = a× (b× c) ⇒
∑

m

Nm
abN

n
mc =

∑

m

Nn
amN

m
bc . (91)

If we define the matrix Na with matrix elements (Na)bc = N c
ab, this relation becomes

a vanishing commutator

[Na, Nc] = 0, (92)

which implies that all fusion matrices Na are diagonalized by the same eigenvectors.

We will exploit this fact later.
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• Fusion with the identity leaves any anyon unchanged

a× 1 = a. (93)

• The fusion product of a with its antiparticle ā contains the vacuum with prefactor 1,

i.e.,

a× ā = 1 +
∑

c6=1

N c
aāc. (94)

• There exists a solution the a consistency condition called pentagon equation, which we

will discuss below.

1. Diagrammatics

Before we turn to the pentagon equation, we want to introduce a diagrammatic language

that will facilitate computations within the fusion and braiding categories. In this formalism,

we denote anyon a traveling forward in time as an upward oriented line. It is the same as

the associated anti-particle traveling backward in time

a āti
m
e

= . (95)

A diagram with open anyon worldlines at the top and bottom represents a state in a

Hilbert space that depends on the number and types of open anyon worldlines. A diagram

without open worldlines represents an amplitude or complex number. The simplest nontriv-

ial Hilbert space is the fusion space V c
ab. Its dimension is given by the number of ways that

anyons a and b can fuse into c, i.e., dimV c
ab = N c

ab. A basis in V c
ab is denoted by

〈a, b; c, µ| =:

(
dc
dadb

)1/4

a b

c

µ ∈ V c
ab. (96)

Here, µ = 1, · · · , N c
ab labels the fusion multiplicity and the real positive prefactor (dc/da db)

1/4

should be understood as a normalization constant at this stage. We adopt the normalization

of Ref. 21. Likewise, we define the splitting space V ab
c of the same dimension dimV ab

c = N c
ab

and write a basis as

|a, b; c, µ〉 =:

(
dc
dadb

)1/4
a b

c

µ ∈ V ab
c . (97)
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Two propagating particles a and b live in a vector space V ab
ab =

⊕
c V

ab
c ⊗V c

ab. The identity

element Iab in V ab
ab is then represented by the completeness relation

Iab =
∑

c,µ

|a, b; c, µ〉〈a, b; c, µ| (98)

which we represent pictorially as

a b
=
∑

c,µ

√
dc
dadb

a b

c
µ

a b

µ
. (99)

The basis vectors in V ab
c and V c

ab furthermore satisfy the orthogonality relation

〈a, b; c, µ|a, b; c′, µ′〉 = δc,c′δµµ′ (100)

which we represent pictorially as

c

a b

µ

c0
µ0

= δc,c′δµµ′

√
dadb
dc c

. (101)

In particular, we can choose c = 1 (a dashed worldline) to obtain

aā = a a =

√
dadā
d1

. (102)

We can use this relation to determine the normalization constants da, which are called

quantum dimensions. We have the freedom to choose d1 = 1 and note that for all examples

discussed here da = dā. It follows that

da = a. (103)

2. F-moves and the pentagon equation

As noted above, we need to impose a further consistency condition to complete the

definition of a fusion category. For this, we generalize the notion of associativity which we
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imposed on the fusion coefficients by imposing associativity on the basis. The consistency

equations basically say that observables only depend on the state of the particles at the

beginning (the fusion channel) and at the end. Nothing in between can matter, up to phases

and rotations in possibly degenerate spaces. We consider the Hilbert space of particle d

splitting into three (not two) particles a, b, c

V abc
d =

∑

e

V ab
e ⊗ V ec

d =
∑

f

V af
d ⊗ V bc

f . (104)

There is hence a unitary transformation F abc
d (“F -move”) between the two vector spaces

|a, b; e, α〉 ⊗ |e, c; d, β〉 =
∑

f,µ,ν

[
F abc
d

]
(e,α,β),(f,µ,ν)

|b, c; f, µ〉 ⊗ |a, f ; d, ν〉 (105)

which reads diagrammatically

a b c

↵

�
e

d

=
∑

f,µ,ν

[
F abc
d

]
(e,α,β),(f,µ,ν)

µ

a b c

d

f
⌫

. (106)

For a fusion category to be unitary, we require that (F abc
d )† = (F abc

d )−1 (as a matrix). Notice

that F abc
d is trivial if any of a, b, c = 1.

The pentagon equation is the consistency condition diagrammatically represented in

Fig. 9. It shows that there are two ways to build the same mapping between two vec-

tor spaces out of F -moves. Each distinct solution, up to gauge freedom, of the pentagon

equation

[
F fcd
e

]
gl

[
F abl
e

]
fk

=
∑

h

[
F abc
g

]
fh

[
F ahd
e

]
gk

[
F bcd
k

]
hl

(107)

is a distinct fusion category (with the same fusion rules). Here and below we have suppressed

the Greek indices that correspond to the fusion multiplicities. We will focus on theories of

multiplicity 1 only, i.e., all N c
ab fusion coefficients will be either 0 or 1. As the F -moves relate

different basis states, not all of them are gauge invariant (see below). However, there are

some F symbols which are gauge invariant. Those are related to invariants of the theory

called Frobenius Schur indicators.
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FIG. 9. The pentagon equation defines a consistency relation that has to be imposed on a fusion

category.

3. Gauge freedom and its fixing

Consider a gauge transformation on the basis states |a, b; c〉

|a, b; c〉′ = uabc |a, b; c〉 . (108)

We only consider the case without multiplicities, i.e., Nab
c = 0, 1, for which uabc ∈ C are scalars

with |uabc | = 1. Likewise, if N bc
f = 0, 1 the F symbols are scalars with

∣∣∣
[
F abc
d

]
ef

∣∣∣ = 1. In view

of the definition Eq. (105), the F symbols are not invariant under the gauge transformation.

They transform as
[
F abc
d

]′
ef

=
[
F abc
d

]
ef

uabe u
ec
d

uafd u
bc
f

. (109)

Furthermore, we need to set

u1b
c = δbc, (110)

since the fusion of the identity particle can be added at any point in time to the worldline

of any particle b without changing the state.

From this, we can conclude that the following F symbols are gauge invariant

[
F 1bc
d

]
ef

=
[
F 1bc
d

]
bd
,

[
F a1c
d

]
ef

=
[
F a1c
d

]
ac
,

[
F ab1
d

]
ef

=
[
F ab1
d

]
db
. (111)
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In a theory with no multiplicity, all these F symbols are equal to unity because they represent

identity maps from spaces |b, c; d〉 into the same space

[
F 1bc
d

]
ef

=
[
F 1bc
d

]
bd

=
[
F a1c
d

]
ef

=
[
F a1c
d

]
ac

=
[
F ab1
d

]
ef

=
[
F ab1
d

]
db

= 1. (112)

4. Quantum dimensions and Frobenius Schur indicators

Having completed the definition of a fusion category, we now explore its structure. First,

we shall properly define the quantum dimension da of an anyon a that has already entered

several relations as a normalization factor. Physically the definition of da can be obtained

from imposing isotopy invariance, which means the ability to remove bends in particle world-

lines. This should be possible as long as lines are not crossed and end points are not moved.

Bending a line slightly (so that the line always flows upward) is a trivial allowed move, but

a complication arises when a line is bent so much that is acquires a turning point. The

F -move associated with this type of bending is

a

ā

aa

a

a

a
1

1

= [F aāa
a ]1,1

a

ā

a

a

a

a

ā

1

1

= da [F aāa
a ]1,1 a. (113)

Notice that the symbol [F aāa
a ]11 is gauge invariant. Hence its value is a topological invariant.

Since we know that the line in the left diagram is isotopically equivalent to a line going up,

it should be, up to a phase, equal to a line going up. We conclude that [F aāa
a ]11 = χa/da,

where χa is a phase called the Frobenius Schur indicator. If a is its own antiparticle, χa

has to equal either +1 or −1. Since it can take different values, it is a topological invariant

characterizing the fusion category. Interestingly, there are other Frobenius Schur indicators

that characterize the theory as topological invariants. For example, one which we will not

further elaborate on is connected to the trivalent vertex.21

We now know how to compute the quantum dimension through the F -symbols. However,

there is another, easier way of computing the quantum dimensions. This is obvious once the

space of states has been endowed with a completeness and an orthonormality relation, that
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we gave in Eq. (99) and Eq. (101), respectively. One can use them to show the identity

dadb =
∑

c

N c
abdc, (114)

for

dadb = a b =
∑

c

√
dc
dadb

b a c =
∑

c

√
dc
dadb

ab c

=
∑

c

N c
ab c =

∑

c

N c
abdc.

(115)

Equation (114) is key to understand how the quantum dimensions follow from the fusion

rules. It is again useful to render the fusion coefficients in a matrix form (Na)bc = N c
ab

(b and c are the indices of the matrix Na). Then, Eq. (114) is nothing but an eigenvalue

equation for Na. We see that da is an eigenvalue of Na and its eigenvector is the vector

that contains all quantum dimensions dc. The existence of the real positive eigenvalue da

is a highly nontrivial fact. The Perron-Frobenius theorem, proved by Oskar Perron (1907)

and Georg Frobenius (1912), asserts, in its weak version, that a real square matrix with

nonnegative entries has a largest positive eigenvalue and that the corresponding (possibly

degenerate) eigenvector has nonnegative components. We would like to use it to show that

the eigenvalue da is the largest eigenvalue of the matrix Na. By assumption, the vector with

entries dc has only strictly positive components. Suppose we have another eigenvector v of

Na with nonnegative components vc ≥ 0 and eigenvalue µa. Then the strict equality

∑

c

vcdc > 0 (116)

holds since all dc are strictly positive and at least one vc is strictly positive as well. From

da

(∑

c

dcvc

)
=
∑

b,c

dbN
c
abvb = µa

(∑

c

dcvc

)
, (117)

it thus follows that the eigenvalues da and µa are equal. In other words, any nonnegative

eigenvector of Na has the same eigenvalue da. This includes the eigenvector of the largest

eigenvalue of Na, which is nonnegative due to the Perron-Frobenius theorem. Hence, da is

the largest eigenvalue of Na.
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Using the fact that da is the largest eigenvalue, we can now give a more physical inter-

pretation of the quantum dimension. For that, consider the fusion of some anyon a with

itself n times

a× a× · · · × a︸ ︷︷ ︸
n

=
∑

c1,c2,··· ,cn−1

(Na)ac1 (Na)c1c2 × · · · × (Na)cn−2cn−1 cn−1. (118)

The righthand side contains the (n − 1)-th power of the matrix Na. Hence, approximating

Na by its highest eigenvalue, we conclude the the dimension of the fusion space of n anyons

of type a is dominated by the quantum dimension dim(
⊕

c V
c
a...a) ∼ dna for large n. In other

words, the quantum dimension tells us how fast the Hilbert space for a particle grows! Any

non-Abelian particle has a quantum dimension strictly larger than unity (Abelian particles

have quantum dimension unity).

5. Examples

Before moving on to impose more structure on the fusion category in order to obtain a

braiding category, we shall briefly follow up on the two examples of semion TQFT and Ising

TQFT.

Semion TQFT — The simplest nontrivial TQFT has one particle s besides the identity

and the semion fusion rules

s× s = 1, 1× s = s. (119)

The theory is Abelian, i.e., ds = 1. Let us solve the pentagon equation for this theory.

There is only one F -symbol, which is not entirely determined by gauge fixing alone, namely

[F sss
s ]11. We can deduce its allowed values from the pentagon equation

[
F 1ss

1

]
s1

[
F ss1

1

]
1s

= [F sss
s ]11

[
F s1s

1

]
ss

[F sss
s ]11 (120)

which, using Eq. (112), yields the two possibilities

[F sss
s ]11 = ±1. (121)

In fact, [F sss
s ]11 is equal to the Frobenius Schur indicator mentioned above and the two

values ±1 distinguish two different fusion categories. The choice +1 is trivial, while the −1

is what is commonly called the semion TQFT. For example, it is realized in the ν = 1/2

Laughlin state of bosons in the fractional quantum Hall effect.
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Ising TQFT — We gave the fusion rules of the non-Abelian Ising TQFT in Eq. (89). We

now want to use Eq. (114) to compute the quantum dimensions of the anyons. For that we

note that the fusion matrix [in the basis (1, σ, ψ)] of the σ anyon is given by

Nσ =




0 1 0

1 0 1

0 1 0


 . (122)

Its eigenvalues are given by ±
√

2 and 0, the largest of which dσ =
√

2 is the quantum

dimension of the σ particle. Its corresponding eigenvector (d1, dσ, dψ) = (1,
√

2, 1) indeed

contains the quantum dimensions of all anyons. The quantum dimension
√

2 is compatible

with our explicit calculation of the degeneracy resulting from Majorana bound states in the

vortices of a p-wave superconductor. For example, 2 vortices with one Majorana state each

gave rise to a degeneracy
√

2
2

= 2 of the state.

B. Braiding Category

A bare fusion category has no means to relate the two fusion spaces V ab
c and V ba

c . The

physical operation that corresponds to such a relation is an exchange between the particles

a and b. In a braiding category, exchange is a map Rab : V ab
c → V ba

c . A double exchange

is an automorphism in a given fusion space RbaRab : V ab
c → V ab

c . For fusion processes

without multiplicities, for which the space is one-dimensional, RbaRab is thus a phase (it is

represented by a matrix if the multiplicity N c
ab is larger than 1). Upon braiding the state

changes by flipping the particles, by convention,

Rab |a, b; c, µ〉 =
∑

ν

[Rab
c ]µν |b, a; c, ν〉 . (123)

Diagrammatically, this operation (“R move”) is represented as

c

a b
= Rab

c

ab

c
, (124)

in the case without multiplicities.

For this braiding relation to define a consistent braiding category, the R and F symbols

have to satisfy two consistency relations called hexagon equations. (The two hexagon equa-

tions differ only in the directions of the braids involved; one uses R, the other one uses R−1.
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FIG. 10. The hexagon equation defines a consistency relation that has to be imposed on a braiding

category.

For simplicity, we only present the equation for R here.) As with the pentagon equation for

the F symbols alone, the hexagon equation represents a way to mix F and R moves to get

between the same two diagrams in two different ways. Analytically, it reads

Rab
e

[
F bac
d

]
eg
Rac
g =

[
F abc
d

]
ef
Raf
d

[
F bca
d

]
fg

(125)

and they are shown diagrammatically in Fig 10. The matrix Rab
c is unitary, and if any of a

or b is the identity particle then the R matrix is unity (braiding with the vacuum is trivial)

R1b
c = Ra1

c = 1. (126)

1. Topological spin

Every quasiparticle type a in a braiding category carries another topological quantum

number besides its quantum dimension, namely the complex-valued topological spin θa with

|θa| = 1. Physically, the topological spin can be interpreted as the phase resulting from a

rotation of the particle around its own axis by 2π. It is −1 for fermions, but can be fractional
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for other particles. Diagrammatically, we can define θa as

a

= θa

a

=

a

,

a

= θ∗a

a

=

a

. (127)

We bend the world line of a particle a, bring it down, then bring it back to itself, this

time braided, then take it to infinity. This corresponds, up to a phase, to the configuration

without bending.

To see how the topological spin is related to the R symbols, we want to evaluate a

diagram that represents an amplitude, i.e., it is closed. For that, we simply connect up the

open worldlines in Eq. (127) with an ā worldline and obtain the definition

θa :=
1

da
ā ā . (128)

We evaluate this diagram by inserting an identity and applying an R move (by the definition

of the R symbols, exchange is only defined between worldlines that are in a definite fusion

channel)

ā ā =
∑

c

√
dc
d2
a

a

c

a

=
∑

c

√
dc
d2
a

Raa
c

c

a a

=
∑

c

√
dc
d2
a

Raa
c a ca =

∑

c

√
dc
d2
a

Raa
c a ca

=
∑

c

Raa
c c =

∑

c

Raa
c dc

(129)

Combining Eqs. (128) and (129), we obtain the definition of θa in terms of the R symbol

θa :=
1

da

∑

c

dcTr[Raa
c ]. (130)

Here, the matrix trace Tr is relevant for theories with multiplicities, in which case Raa
c is a

square matrix with dimension equal to the multiplicity of the fusion channel c of a× a.
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Another identity, which requires bending to be proven, is

Rāa
1 = θ∗aχa (131)

where χa is the Frobenius Schur indicator.

2. Ribbon equation

We are now in good shape to prove an important identity relating topological spin to the

R matrices that is called the ribbon equation

Rab
c R

ba
c =

θc
θaθb

I, (132)

where I is the identity element in the space V ab
c . Physically, it equates the operation of

twisting each worldline in a splitting diagram by 2π with the operation of braiding the

splitting products. We can prove the ribbon equation via diagrammatic manipulations. For

that, we evaluate the same diagram in two different ways. For one, we can use the topological

spin of the split particle c

a b

c

c

=

c

a b

c

= θc

c

a b

c

(133)
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On the other hand, we can use a combination of topological spins and R moves

a b

c

c

= θb

c

c

ba

= θb

c

c

ba

= θaθb

c

c

ba

= θaθbR
ab
c

ab

c

c

= θaθbR
ab
c R

ba
c

c

a b

c

.

(134)

Together, Eq. (133) and Eq. (134) yield the ribbon equation (132).

3. Vafa’s Theorem

An important theorem relating the topological spin and the structure constants N c
ab is

Vafa’s theorem.22 It shows that the topological spin is a rational number. We will not derive

it here but point the reader to Ref. 18 for an easy derivation. Vafa’s theorem proceeds by

writing down in matrix form the two hexagon equations, one for R and one for R−1, dividing

them and using Rab
c R

ba
c = θc/(θaθb)I to obtain

∏

c

(
θc
θaθb

)Nc
abN

e
cd∏

f

(
θf
θaθd

)Ne
bfN

f
ad

=
∏

r

(
θe
θaθr

)Nr
bdN

e
ar

. (135)

As an example, we will later use Vafa’s theorem to deduce the spin of the σ particle in the

Ising TQFT.

C. Modular matrices

In the last Sections, we have constructed the fusion and braiding category from the F

and R moves and deduced the universal data (quantum dimensions da and topological spins

θa) that characterizes the anyons in this category.

For TQFT in physical systems, i.e., quantum liquid ground states of matter, it is impor-

tant to address how the universal information about the TQFT can in general be accessed.
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We know that topological properties cannot be accessed by local measurements. In contrast,

it turns out that there is a set of global measurements that can be used, namely the action of

automorphisms on the manifold over which the system is defined. Automorphisms are trans-

formations that map the manifold back to itself and form the so-called mapping class group

of the manifold. Here, we will explore the most standard case, namely (2 + 1)-dimensional

systems with periodic boundary conditions, in which case the manifold is a torus. Automor-

phisms on the torus form the modular group, which has two generators. The first generator

S exchanges the two coordinate axes. The second generator T changes the angle between

the coordinate axes.

A TQFT on the torus exhibits a topological ground state degeneracy, where the number

of ground states is equal to the number of anyons in the theory (including the identity). It is

the representation of the S and T operations in this ground-state manifold that reveals infor-

mation about the nature of the TQFT. We call these representations the S and T matrices.

Instead of deriving the S and T matrices from the action of the respective transformations,

we will simply give their definitions within the TQFT here and subsequently explore their

properties (see Ref. 23 for a more complete discussion of the connection).

1. The S matrix

In the TQFT, the S matrix is defined diagrammatically as

Sab :=
1

D
ab , (136)

where D is the total quantum dimension of the TQFT

D =

√∑

a

d2
a. (137)

(We choose the same convention for the diagrammatic definition of Sab here as in Ref.21

which is different from the one chosen in Ref.18) We can relate it to the topological spins
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and fusion coefficients via the following diagrammatic manipulations

ab =
∑

c,µ

√
dc
dadb

a

c

b

b̄ā

µ

µ

=
∑

c,µ,ν

√
dc
dadb

[
Rab
c

]
µν

[
Rba
c

]
νµ

c
ā

µ

µ

b̄

=
∑

c,µ,ν

[
Rab
c

]
µν

[
Rba
c

]
νµ

√
dc
dadb

cā

µ

µ

b̄

=
∑

c

N c
abTr

(
Rab
c R

ba
c

)
dc.

(138)

From here, we use the ribbon Eq. (132) and Eq. (136) to arrive at the final expression for

the S matrix

Sab =
1

D

∑

c

N c
ab

θc
θaθb

dc. (139)

2. Verlinde Formula

We now derive a fundamental formula in both TQFT and in conformal field theory. This

formula relates the S-matrix to the fusion coefficients. It allows us to find the set of braiding

phases among the anyons, but not always the topological spin of every particle.

We start by showing that

S1x =
dx
D
. (140)

To prove this, we first observe that

a

x

=
Sax
S1x

x, (141)

holds, because we can close the x worldlines in this diagram to obtain amplitudes and an

identity loop can be added without changing the value of the diagram. Relation (141) can
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be used to obtain the line of equalities:

DSax = a

x

=
Sax
S1x

x =
Sax
S1x

dx , (142)

which yields Eq. (140). Equation (140) says that the first column of the S matrix contains

only positive numbers, the quantum dimensions of the theory.

The next step is to derive the all-important Verlinde formula. Staring from two copies of

Eq. (141), we can perform the following set of diagrammatic manipulations

Sax
S1x

Sbx
S1x

x =

a

b

x

=
∑

c

√
dc
dadb

b a c

x

=
∑

c

√
dc
dadb

ab c

x

=
∑

c

N c
ab c

x

=
∑

c

N c
ab

Scx
S1x

x.

(143)

yielding the Verlinde formula
∑

c

N c
abScx = Sbx

Sax
S1x

. (144)

This is a remarkable equality, which takes again the form of an eigenvalue equation for the

fusion matrices Na. We had already encountered an eigenvalue equation for Na when solving

for the quantum dimensions, i.e., the first column of the S matrix. The Verlinde formula

says that the S matrix contains both the eigenvectors and the eigenvalues of the (Na)bc

matrices. If the S matrix is unitary (and thus has an inverse), we call the theory a unitary

modular category. In this case we have a simple relation between the fusion coefficients and

the S matrix

Na = SDaS
−1, (145)

where we have defined the diagonal matrices

(Da)mn = Sam/S1mδmn. (146)
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This also implies that all the Na matrices are commuting [which we already knew from

Eq. (92)], as they are diagonalized by the same eigenvectors.

3. Obstruction for theories with multiplicities

In this Subsection, we want to illustrate how we can use the structure of the braiding

category to discard certain fusion categories as unphysical (or at least not unitary). As an

example, we ask which theories are possible with only two particles, the identity 1 and a

particle s. For s to have an inverse, all possible fusion rules

s× s = 1 +ms (147)

are labelled by a nonnegative integer m. The case m = 0 is the semion TQFT of Eq. (119).

For m = 1 we have the non-Abelian Fibonacci fusion rules.

We would like to answer the question for which m > 1 we can define a consistent modular

braiding category. Observe that the fusion matrix

Ns =


0 1

1 m


 (148)

yields the quantum dimension

ds =
m+

√
m2 + 4

2
. (149)

From the definition of the S matrix, we have that

Ss1 =
1

D

∑

c

N c
s1

θc
θs
dc =

1

D
ds = S1s; S11 =

1

D
; Sss =

1

D

1

θ2
s

(1 +mθsds). (150)

It is already possible to see that something will go wrong for large enough m if we demand

a unitary theory, i.e., a theory with a unitary S matrix. For a unitary matrix, all the matrix

elements have to be less or equal to 1. When m is large, ds is proportional to m (and so

is D) but the Sss matrix element has a mds/D which is proportional to m in the large m

limit. Hence we forsake unitarity.

Lets us calculate the exact m where unitarity breaks down. Imposing unitarity of the S

matrix yields

S†S =
1

D2


 D2 ds

(
1 + 1+mθsds

θ2s

)

ds

(
1 + 1+mθ∗sds

(θ∗s )2

)
d2
s + (1 +mθ∗sds)(1 +mθsds)


 , (151)
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and we find

(1 +mθ∗sds)(1 +mθsds) = 1, (152)

which reduces to

θs + θ∗s +mds = 0, (153)

where we have used that the value of ds is positive. Now, mds is a positive number growing

with m, while θs is a phase so the sum with its conjugate cannot be smaller than −2. Hence

mds ≤ 2 → m2 +m
√
m2 + 4 ≤ 4 (154)

with the solutions m = 0 and m = 1. We can see that already m = 2 gives a left side too

large. We conclude that the semion and the Fibonacci TQFT are the only allowed modular

unitary theories with one nontrivial anyon s.

4. The T matrix

The T -matrix is diagonal and simply given by

Tab = θaδab. (155)

D. Examples: The 16-fold way revisited

To motivate our study of TQFTs and as an example of topologically ordered phases, we

have studied in Sec. II B 4 Kitaev’s 16-fold way of classifying topological superconductors as

gauge theories from their bulk properties. Equipped with category theory understanding of

TQFTs, we now want to revisit this classification, as it provides us with several examples

of TQFTs. In particular, we want to characterize the theories from their S and T matrices.

1. Case: C(1) odd

If we couple an odd number of layers of spinless chiral p-wave superconductors, the core

of each vortex still carries an unpaired Majorana state. For that reason, the vortices will

have Ising fusion rules (89) in this case. Using the Verlinde formula, we can compute the S
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matrix in the basis (1, σ, ψ)

S =




1
√

2 1
√

2 0 −
√

2

1 −
√

2 1


 . (156)

If, in contrast, we compute the S matrix via its definition (139), we find in particular for

the (σ,σ) matrix element

Sσσ =
1 + θψ

2θ2
σ

. (157)

For this to vanish, we conclude that θψ = −1, that is, ψ is a fermion. We cannot obtain θσ

from similar relations using only the S matrix. Rather, we can use Vafa’s theorem (135) to

deduce the spin of the σ particle. If we take a = b = d = e = σ we find

∏

c

(
θc
θσθσ

)N
c
σσN

σ
cσ

∏

f

(
θf
θσθσ

)N
σ
σfN

f
σσ =

∏

r

(
θσ
θσθr

)N
r
σσN

σ
σr (158)

or
1

θ2
σ

θψ
θ2
σ

1

θ2
σ

θψ
θ2
σ

=
1

θψ
, (159)

which gives

θ8
σ = θ3

ψ. (160)

Since θψ = −1, we have

θ8
σ = θψ = −1, (161)

i.e., the phase of the topological spin of the Majorana is an odd-integer multiple of 1/16.

We can thus discriminate 8 different TQFTs with Ising fusion rules by the values

θσ = e2πi C(1)

16 , (162)

where C(1) is the [odd, as needed by Eq. (161)] Chern number or the number of stacked

spinless chiral p-wave superconductors.

2. Case C(1) = 2 mod 4

If we stack C(1) = 2 mod 4 layers of chiral p-wave superconductors, we had argued before,

heuristically, that the system can be described as one species of spinless Dirac fermions

with Chern number C̃(1) = C(1)/2. In this system the 2π flux ψ binds odd integer charge

C̃(1), that is, the 2π flux is a fermion ψ. However, unlike in the quantum Hall effect, the

68



superconducting π or (−π) fluxes are allowed topological excitations that bind half-integer

charge. Let us denote the π flux with charge C̃(1)/2 by a. Fusing such a π flux with the

fermion (or 2π flux) gives another excitation, a (−π) flux, with 3C̃(1)/2 charge that we call

ã. (We note that 4π flux is identified with zero flux, as this corresponds to a charge 2C̃(1)

object, i.e., C̃(1) Cooper pairs that can be absorbed by the condensate.) Two fluxes of either

type a or ã thus fuse into ψ. This motivates the following fusion rules

a× ã = 1, a× ψ = ã, ã× ψ = a,

a× a = ã× ã = ψ, ψ × ψ = 1.
(163)

These fusion rules are Abelian, so that the quantum dimensions are d1 = da = dã = dψ = 1.

Given the fusion matrices, we can compute the S matrix as the matrix of their simultaneous

eigenvectors. In the basis (1, a, ã, ψ) it can take one of two forms

S(1) =
1

2




1 1 1 1

1 −i i −1

1 i −i −1

1 −1 −1 1



, S(2) =

1

2




1 1 1 1

1 i −i −1

1 −i i −1

1 −1 −1 1



. (164)

From Saa = Sãã = ±i/2, we conclude

θ2
a = θ2

ã = ∓i, (165)

while Saψ = Sãψ = −1/2 gives

θa = θã, (166)

with the help of Eq. (139). We conclude that there are four possible theories with topological

spins

θa = θã = e2πi C(1)

16 . (167)

3. Case C(1) = 0 mod 4

If we couple 4 layers of chiral p-wave superconductors, the π superconducting vortices

(let us denote them e) bind a full electron charge. However, the electrons exist also as free

fermionic quasiparticles f in the theory. Hence, the fusion of e with f should yield a new

excitation m that is a π vortex stripped of its charge. Together, e, m, and f obey the toric
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code fusion rules Eq. (88). The S matrix of the theory in the basis (1, e,m, f) can take one

of two forms

S(1) =
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



, S(2) =

1

2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



. (168)

If we assume that θf = −1, we find from S(1) that θ2
e = θ2

m = θeθm = −1, while the theory

with S(2) has θ2
e = θ2

m = θeθm = 1. In total, we have four possibilities

θe = θm = e2πi C(1)

16 (169)

with C(1) = 0 mod 4 as allowed theories. This concludes Kitaev’s 16-fold way.18
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