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Topological states of matter

* Gapped states of matter, do not break any symmetry

e Cannot be deformed adiabatically to “trivial” (atomic)
insulator: phase transition must occur along the way

 “Hidden” (non-local, or “topological”) order in the
ground state wavefunction

Examples:

* Topological insulators (2D and 3D), Haldane S=1 chain:
“Symmtry Protected Topological phases” (SPT), distinct from
the trivial phase so long as symmetry is maintained

 Quantum Hall effect

Topologically ordered states of matter (e.g. fractional QH in D=2):

* Point-like excitations with fractionalized statistics (anyons!),
sometimes with fractional quantum numbers (e.g. charge)

* Ground state degeneracy depends on topology (genus) of manifold



Non-Abelian statistics

Topologically ordered states can exhibit Non-Abelian statistics

In the presence of excitations (“quasi-particles”), ground state is
multiply degenerate

Moving excitations around each other (“braiding”) implements

unitary transformation that depends on topology, not geometry,
of path

Interactions necessary (true for all topologically ordered states)
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This talk: non-Abelian properties of
zero modes at edges and defects

e Zero modes that appear at edges/defects (e.g., vortices) of
certain kinds of superconductors

Do not require topological order; no dependence of g.s.
degeneracy on topology of manifold; can appear without
interactions (or interactions treated within mean-field theory)

* Do nevertheless support robust g.s. degeneracy (not symmetry
protected) and non-Abelian statistics
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BdG formalism and p-wave

superconductors
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BdG formalism and p-wave
superconductors
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BdG formalism and p-wave
superconductors
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1D p-wave superconductor

H = Z( tcieipr + H.c. — pc| cz+Aczcz+1+H.c.>

Fourier transform:

= /dk (—2tcosk — p) chk + Asin k’chT_k + h.c.

Spectrum:

E, = :I:\/(—Ztcosk‘ — u)? +|A sin? k.

Phase transition at u = £2t, at £k = 0, k = 7, respectively.

Change p slowly in space
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1D p-wave superconductor

H = /dk (—2tcosk — w) c,tck + Assin kgcc,tcT_k + h.c.

For small k, expand to first order in k, and go back to real space:

o~ (o) 00

H = —-u(x)r* — AT%i0,.

Look for zero energy solution:

[—0u(z)T? — iAT®0] v =0
Multiply by i7%:

[p(x)T¥ + Ad, |9 =0

Jackiw-Rebbi soliton

W =e Jo d’ i 7Y = 1)




1D p-wave superconductor

* We would like to identify |u| < 2t and |u| > 2t as two different
phases. But what distinguishes the two phases?

* Inthe “topological” phase (|u| < 2t):

Fermion parity of the ground state is opposite!
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1D p-wave superconductor

Topological phase: fermion parities of ground states
with periodic and anti-periodic b.c. are opposite.

Consequences:

* Trivial and topological phases must be separated by gap closing
(fermion parity in one sector must switch)

* In a non-interacting translationally invariant system, topological

phase transition is characterized by gap closing either at k = 0 or
k=m



Another derivation of the existence of
zero modes (Kitaev)
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Majorana zero modes in a topological
superconductor

Superconductor

ST - R S ———— P

Gapped system, two degenerate ground states, characterized by
having a different fermion parity

Defects (in this case, the edges of the system) carry protected
zero modes

Ground state degeneracy is “topological”: no local
measurement can distinguish between the two states!

Useful as a “quantum bit”?

Kitaev (2001), Oreg (2009), Lutchyn (2009),...



Experimental realizations and
signatures

Rule of thumb: whenever we have a single Fermi surface in the normal state, if we manage to gap
it, we will get a topological superconducting state.

Rule of thumb (2): the topological and trivial states must be separated by a gap closing either at
k=0or k=m.

Quantum wire with spin-orbit coupling proximity coupled to a superconductor (Oreg et al., Lutchyn
et al. (2010)):
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Experimental realizations and

signatures
SR
1D wire

Lutchyn et al. PRL 2010

x Oreg et al. PRL 2010

S-Wave su perconducto r

Albrecht et al.,
Nature 2016

Das et al., Mourik et al.,
Nature Physics 2012 Science 2012

Rokhinson et al., Nature Phys. (2012), Deng et al., Nano Lett. (2012),
Churchill et al., Phys. Rev. B (2013), Nadj-Perge, Science (2014)



Experimental sighatures

Zero-bias peak in conductance G(V) = 5_11/

from normal metal.

2
Ideally, G(V - 0) = 2% if there is only one

channel in the metal coupled to the
superconducting wire. Zhang, Kouwenhoven et al. (2018)

41 periodic Josephson effect between two

topological SC Hj = iTe®/ 2y v, 4+ H.c. = iTy17 cos(¢/2).
Wiedenmann, Molenkamp et al. (2016)

Disappearance of even-odd effect in electron addition spectrum:
2 . 2
€ (N CVG) —|—f(N)

2C
1-(-1D)N

E(N,Vg) =

Usually in a superconductor, f(N) = A
Albrecht, Marcus et al. (2016)

; in a topological SC, A = 0.



Braiding Majorana zero modes
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Braiding Majorana zero modes (2)
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Braiding Majorana zero modes (3)

, . 0 l <
HCH. = LZ L 3‘.3 ('t) 7, TJ VY, T, = ( | o ) = 0
8]
vT, 7, = _ = 0
* 7, * 1, 22 L )
I —
[ " ey L
-z — ] = z
T, o2 ‘73 * 7, o T :rs * 7, L 3’Jq (O *l) a
The  brgiding protocol COn be  visugliped as follows .
The Hami [fonion has 3 quaM*erS L du, T oand 35
Draw +hem in a 3D space ard  4ic  Tigt T e Fyo = TP

[7411, =1
Be ”] phas e

o
2§ A7 =

.

1§

r

<4



Plan

A few words about topological order

p-wave superconductors

Kitaev’s chain

Experimental platforms and physical signatures

New platform: topological superconductivity in planar
Josephson junctions

Beyond Majoranas



New platform: planar Josephson
junctions

Hart et al. experiment (Yacoby group, 2017):

| (AC+DCQ) Z

V (AC+DQ)

As a function of B, the critical current vanishes and recovers: Shifted Fermi surfaces due to Zeeman field B || z:

Resistance ()
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New platform: planar Josephson

junctions
Ingredients:
, v 1D
v" Superconductivity
2 DEG v' Magnetic field

New features:

* Robust topological phase, weak dependence
on chemical potential

* C(Can tune itself the topological phasel

Pientka, Keselman, EB, Yacoby, Stern, Halperin (PRX, 2017);
Hell, Leijnse, Flensberg (PRL, 2017)



Setup and Model

2 DEG

Hamiltonian in the normal region:

+a(kxay + iayax) + B,.0,




Phase Diagram

k,.=0 bound states: Gap closing lines (for any W):
¢ B, B,
— 42 +t2—W=02n+1
E,, = Acos (2 o W) ¢t v (2n )T

E, 2T
A -

0

% 1T 2 3
No explicit dependence on !



Spectrum across the phase transition
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Gap in the system
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1st-order topological phase transition

Consider a system with no phase bias. What happens as By is varied?



1st-order topological phase transition

Consider a system with no phase bias. What happens as By is varied?

¢ B
k, = 0 mode bound states E, = Acos (E + v—x W)
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Critical current and 1st order transition
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Majorana zero modes

-1 -05 0 05 1 -1 -05 0 05 1
E/A E/IA

Zero bias peak at the edge and phase-dependent gap closings
A. Fornzer: et al. (Nature, 2019), H. Ren et al. (Nature, 2019)



Fractional Josephson vortices
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A. Stern, EB (PRI, 2019)




Fractional Josephson vortices
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Controlling Majoranas by supercurrents?

A. Stern, EB (PRI, 2019)



Tri-junction geometry

A. Stern, EB (PRL, 2019)




Tri-junction geometry

$i=123(x): Gauge-invariant
phases across junctions

¢1+ Py + ¢P3 = 2nn

27 -

Trivial

e __________J

Topological
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A. Stern, EB (PRL, 2019)



Manipulations by supercurrents

112 +123 +131 —_ O

27 -

Trivial

e __________J

Topological

QW/B‘\-\
Trwial

0

0 L
x

A. Stern, EB (PRL, 2019)



Manipulations by supercurrents
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A. Stern, EB (PRL, 2019)



Control by supercurrents

Xj=123: distance of ith
To braid, we need to encircle a line in a

Majorana from center Do
three-dimensional parameter space.

X

2
) 2.¢i =2m
‘ surface The red cycle implements

braiding of Majoranas.”

X3

X1

*Assuming the coupling between each pair 1S monotonic in the separation.

A. Stern, EB (PRL, 2019)



Beyond Majoranas

How can one get protected zero modes
with richer non-Abelian properties?

Not in 1D systems — not even with interactions.

Non-Abelian Fractional qguantum Hall states:

Moore-Read (v = %), Read-Rezayi,...

Alternatively: start from the edge states of Abelian FQH states
to engineer new zero modes



Beyond Majoranas

Consider the effectively 1D boundaries
of 2D a topological phase
which supports (abelian) anyons.

For example:
v = 1/m Fractional Quantum Hall (Laughlin) state

B ‘271'1
‘@)
1 % e/m
= 1D “chiral”

edge state



Beyond Majorana zero modes

Setups for fractionalized Majorana zero modes:

FQH s’ra‘re B

B
V= 1/m

. /
S et M

1—1/m ¢

e tunnelmg

Lindner, EB, Stern, Refael (PRX, 2012);
Clarke, Alicea, Shtengel (Nature Comm., 2013);
Cheng (PRB, 2013)
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Fractionalized Majorana (parafermion)

modes
)
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Electron operator : WR‘I, ~
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Three distinct phases of the edge:

1. Gapless

2. Gapped, gz dominated: (%) # 0
3. Gapped, g5 dominated: (e%!?) # 0
Between 2 and 3, a new type of
“fractionalized Marjoana” zero mode!

(At these points, a Laughlin q.p. can be
injected at no energy cost)



Ground state degeneracy

A

Fermion parity conservation in SC region: [emQ, H] =0
On the edge of a fractional quantum Hall @ n
phase, Q is fractional: m
n:O,...,2m—Bl
2m degenerate f

G.S. per SC P 7

region!
s

Lindner, EB, Stern, Refael (PRX, 2012);
Clarke, Alicea, Shtengel (Nature Comm., 2013);
Cheng (PRB, 2013)



Braiding

Braiding domain walls 3 and 4:

Example: m=3 ¢ =2p+3¢ (p=0,1,2, ¢=0,1)

2
Usqs = exp (z%qg) = exp (—igcf) exp <z’§p2>

(Majorana) ® (Something new!)



