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Topological states of matter
• Gapped states of matter, do not break any symmetry

• Cannot be deformed adiabatically to “trivial” (atomic) 

insulator: phase transition must occur along the way

• “Hidden” (non-local, or “topological”) order in the 

ground state wavefunction

Examples: 
• Topological insulators (2D and 3D), Haldane S=1 chain: 

“Symmtry Protected Topological phases” (SPT), distinct from 

the trivial phase so long as symmetry is maintained

• Quantum Hall effect

Topologically ordered states of matter (e.g. fractional QH in D=2):
• Point-like excitations with fractionalized statistics (anyons!), 

sometimes with fractional quantum numbers (e.g. charge)

• Ground state degeneracy depends on topology (genus) of manifold



Non-Abelian statistics
• Topologically ordered states can exhibit Non-Abelian statistics
• In the presence of excitations (“quasi-particles”), ground state is 

multiply degenerate
• Moving excitations around each other (“braiding”) implements 

unitary transformation that depends on topology, not geometry, 
of path 

• Interactions necessary (true for all topologically ordered states)

ground state is separated from the excited part of
the spectrum by an energy gap. The elementary
particles of the system may form collective com-
posite particles, known as “non-Abelian anyons.”
When that occurs, the ground state becomes de-
generate. In the limit of a large number of anyons,
N, the ground-state degeneracy is lN, and the
anyon is said to have a “quantum dimension” of
l. This degeneracy is not a result of any obvious
symmetry of the system. As such, it is robust and
cannot be lifted with the application of any local
perturbation (11).

Transformations between the degenerate
ground states may be induced by exchanging
the anyons’ positions. The canonical example is
that of a two-dimensional (2D) system, where
anyons may be regarded as point particles.
Imagine a set of anyons that are initially positioned
on a plane at (R1…RN). They are made to move
along a set of trajectories [R1(t)…RN(t)] that ends
with their positions permuted. The motion is slow
enough not to excite the system out of the sub-
space of ground states.When viewed in a 3D plot,
the set of trajectories, known also asworld lines,Ri
(t) look like entangled strands of spaghetti. A
“braid” is defined as a set of spaghetti config-
urations that can be deformed to one another
without spaghetti strands being cut. Remarkably,
the unitary transformation implemented by the
motion of the anyons depends only on the braid
and is independent of the details of the trajec-
tories. These unitary transformations must satisfy
a set of conditions that result from their topo-
logical nature, such as the Yang-Baxter equation
(Fig. 1A).

Notably, for the braid in which two anyons of
types a and b are encircled by a third that is far
away (Fig. 1B), the corresponding transformation
will not be able to resolve the two anyons’ types;
from a distance they would look as if they “fused”
to one anyon, of type c. The fusion of a pair of
non-Abelian anyonsmay result in several different
outcomes that are degenerate in energy when the
anyons are far away from one another (leading to
the ground-state degeneracy). The degeneracy is
split when the fused anyons get close. The list of
cs to which any a-b pair may fuse constitutes the
“fusion rules.” For each anyon of type a, there is
an “anti-anyon” ā such that the twomay annihilate
one another, or be created as a pair.

Topological Quantum Computation
The properties of non-Abelian states that are im-
portant for our discussion are the quantum dimen-
sions of the anyons, the unitary transformations
that they generate by braiding, and their fusion
rules. Different non-Abelian systems differ in
these properties. To turn a non-Abelian system
into a quantum computer, we first create pairs
of anyons and anti-anyons from the “vacuum,” the
state of zero anyons. In the simplest computational
model, a qubit is composed of a group of several
anyons, and its two states, |0〉 and |1〉, are two

possible fusion outcomes of these anyons. (A
qudit is formed if there are more than two possible
fusion outcomes.) The creation from the vacuum
initializes qubits in a well-defined state. The uni-

tary gates are implemented by the braid transfor-
mations (Fig. 1C). At the end of the computation,
the state is read off by measuring the fusion out-
come of the anyons (2–6).

Fig. 1. (A) The Yang-Baxter equation states that two exchange paths that can be deformed into each
other without cutting the world lines of the particles (blue curves) define the same braid. (B) Two
anyons labeled a and b are encircled by a third anyon d. The resulting transformation depends only on
the fusion outcome of a and b. (C) A canonical construction for a qubit, in a system of Ising anyons,
consists of four anyons that together fuse to the vacuum. The two possible states can then be labeled by
the fusion charge, say, of the left pair. A single qubit p/4 gate can be used by exchanging anyons 1 and
2 (depicted), whereas a Hadamard gate can be used by exchanging anyons 2 and 3. Such a construction
can be realized using Majorana fermions. (D) Decoherence of information encoded in the ground-state
space. Thermal and quantum fluctuations nucleate a quasiparticle-antiquasiparticle pair (red, white).
The pair encircles two anyons encoding quantum information, and annihilates. The result of the process
depends on the fusion charge of the two anyons, leading to decoherence of the encoded quantum
information.
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Fig. 2. Braiding in a system hosting Majorana fermions (zero modes or their fractionalized
counterparts). For a manipulation of the subspace of ground states to lead to a topological result,
the number of ground states should remain fixed. (A) Two zero modes initially at locations 1 and 2
are to be interchanged. A pair of coupled zero modes, 3 and 4, is created from the vacuum and
may reside, for example, at the two ends of a short wire. As long as 3 and 4 are coupled (blue line),
they are not zero modes and do not change the degeneracy of the ground state. Next, location 1 is
coupled to 3 and 4 (red dashed line). The coupled system of 1, 3, and 4 must still harbor a zero
mode. Thus, this step does not vary the degeneracy of the ground state, but it does redistribute the
wave function of that zero mode among the three coupled sites. Location 4 is then decoupled from
1 and 3, and the localized zero mode is now at location 4. The outcome is then that 1 was copied to
location 4. (B) In a similar fashion, 2 is copied to location 1. (C) Finally, 1 is copied from location 4
to location 2. At the end of this series, 3 and 4 are again coupled to one another, but 1 and 2 have
been interchanged.
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This talk: non-Abelian properties of 
zero modes at edges and defects

• Zero modes that appear at edges/defects (e.g., vortices) of 
certain kinds of superconductors

• Do not require topological order; no dependence of g.s. 
degeneracy on topology of manifold; can appear without 
interactions (or interactions treated within mean-field theory)

• Do nevertheless support robust g.s. degeneracy (not symmetry 
protected) and non-Abelian statistics

1 2 3 1 2 3

Braid 
group:



BdG formalism and p-wave 
superconductors



BdG formalism and p-wave 
superconductors



BdG formalism and p-wave 
superconductors



1D p-wave superconductor
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1D p-wave superconductor
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Jackiw-Rebbi soliton



1D p-wave superconductor
• We would like to identify ! < 2$ and ! > 2$ as two different 

phases. But what distinguishes the two phases?

• In the “topological” phase ( ! < 2$):

Φ = 0 Φ = )

Fermion parity of the ground state is opposite!



1D p-wave superconductor

Consequences: 
• Trivial and topological phases must be separated by gap closing 

(fermion parity in one sector must switch)
• In a non-interacting translationally invariant system, topological 

phase transition is characterized by gap closing either at ! = 0 or 
! = $

Φ = 0 Φ = $

Topological phase: fermion parities of ground states 
with periodic and anti-periodic b.c. are opposite.



Another derivation of the existence of 
zero modes (Kitaev)

!"#"



Majorana zero modes in a topological 
superconductor

Superconductor
�1 �2

• Gapped system, two degenerate ground states, characterized by 
having a different fermion parity

• Defects (in this case, the edges of the system) carry protected 
zero modes 

• Ground state degeneracy is “topological”: no local   
measurement can distinguish between the two states!

• Useful as a “quantum bit”?

Kitaev (2001),	Oreg (2009),	Lutchyn (2009),…



Experimental realizations and 
signatures



Lutchyn et al. PRL 2010
Oreg et al. PRL 2010

Das et al., 
Nature Physics 2012

Albrecht et al., 
Nature 2016

Rokhinson et al., Nature Phys. (2012), Deng et al., Nano Lett. (2012), 
Churchill et al., Phys. Rev. B (2013), Nadj-Perge, Science (2014)

Mourik et al., 
Science 2012

Experimental realizations and 
signatures



Experimental signatures
Zero-bias peak in conductance ! " = $%

$&
from normal metal.

Ideally, ! " → 0 = )*+
, if there is only one 

channel in the metal coupled to the 
superconducting wire. Zhang, Kouwenhoven et	al.	(2018)

4. periodic Josephson effect between two 
topological SC

Wiedenmann,	Molenkamp	et	al.	(2016)

Disappearance of even-odd effect in electron addition spectrum:

Usually in a superconductor, / 0 = Δ 23 32 4

) ; in a topological SC, Δ = 0.
Albrecht,	Marcus	et	al.	(2016)



Braiding Majorana zero modes



Braiding Majorana zero modes (2)



Braiding Majorana zero modes (3)
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New platform: planar Josephson 
junctions

HgTe
Al
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New features:
• Robust topological phase, weak dependence 

on chemical potential
• Can tune itself  the topological phase!

Ingredients:
ü 1D
ü Spin-orbit
ü Superconductivity
ü Magnetic field

*

Pientka, Keselman, EB, Yacoby, Stern, Halperin (PRX, 2017); 
Hell, Leijnse, Flensberg (PRL, 2017)

New platform: planar Josephson 
junctions



Setup and Model
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States at subgap energies are confined to the quasi-one-
dimensional junction between the two superconducting
leads. Under suitable conditions, the junction can enter a
one-dimensional (1D) topological superconducting phase.
We emphasize that the two-dimensional leads remain trivial
s-wave superconductors throughout this paper even when
the junction is in the topological regime. In fact, the model
in Eq. (1) is insufficient to describe a two-dimensional
topological superconductor, which requires either an out-
of-plane Zeeman field [15] or a Dresselhaus spin-orbit
interaction [16].
In this paper, we study two experimental configurations

in which the model described by Eq. (1) and Fig. 1(a) may
be realized. In the first configuration, the phase across the
junction is a parameter controlled externally by applying a
current or a magnetic flux. In the second configuration, the
phase is left to self-tune so as to minimize the ground-state
energy. For the first configuration, we calculate the phase
diagram as a function of the phase across the junction and
the Zeeman field, while for the second configuration, we
identify the conditions under which the system self-tunes to
a topological phase. We find that the critical current of the
junction can be used as a probe for the transitions between
topological and trivial phases.
We start by evaluating the topological index for particle-

hole symmetric systems in class D. As we shall see in
Sec. III B, the model has a higher symmetry involving a
combination of mirror reflection and time reversal that places
it into the BDI class. Each topological (trivial) region in the
phase diagram of class D will be split into subregions with an
odd (even) Z invariant [23–25]. Breaking this symmetry
stabilizes the topological phase with a single Majorana
bound state at each end. Note also that in the absence of
a Zeeman field and at a phase difference of 0 or π, the system
is time-reversal symmetric and, therefore, belongs to class
DIII. It was previously shown that Josephson junctions at a

phase difference of π can realize a time-reversal-invariant
topological superconducting phase, hosting Kramers pairs of
Majorana modes at its ends [27–29]. However, this requires
a spatially nonuniform spin-orbit coupling in the 2DEG,
unlike the one present in our model.
To determine whether our one-dimensional system is in

the topological phase of class D, we consider a configuration
with periodic boundary conditions in the x direction. As
analyzed in the seminal work by Kitaev [30], the topological
invariant is then given by the fermion parity of the ground
state of Hðkx ¼ 0Þ. Note that at kx ¼ 0, spin along the x
direction is conserved by the Hamiltonian in Eq. (1) and the
spin-orbit coupling can be gauged away by substituting
∂y → ∂y þ imασx. We arrive at the effective Hamiltonian

H0¼ð−∂2
y=2m−μÞτzþEZðyÞσxþΔðyÞτþþΔðyÞ%τ−: ð4Þ

The subgap spectrum of H0 as the phase difference ϕ is
varied is shown in Fig. 1(b). For simplicity of presentation,
we assume here a narrow junction in the Andreev limit
μ ≫ Δ, with vanishing normal reflection. When the phase
difference between the superconductors is zero, the system is
trivial, and thus the number of occupied states at kx ¼ 0 is
even. For vanishing Zeeman field, the spectrum as a function
of ϕ is twofold degenerate. The number of occupied states is,
therefore, even for all values of ϕ, and the system remains
trivial as ϕ is varied. At nonzero fields, the degeneracy is
split. In this case, as the phase difference is varied, a single
gap closing occurs for some 0 < ϕ1ðEZ;JÞ < π. At this gap
closing, the parity of the number of the occupied states
changes, and the system undergoes a transition into the
topological phase. As the phase is varied further, another gap
closing occurs at ϕ2 ¼ 2π − ϕ1 and the system undergoes a
transition back into the trivial phase. The system is therefore
in the topological superconducting phase for ϕ1 < ϕ < ϕ2.

FIG. 1. (a) A Josephson junction is formed in a 2DEG with Rashba spin-orbit coupling by proximity coupling it to two s-wave
superconductors with relative phase difference ϕ. An in-plane magnetic field is applied parallel to the interface between the normal and
the superconducting regions. (b) The bound-state spectrum in a narrow junction for kx ¼ 0. The spectrum in the absence of a Zeeman
field is twofold degenerate and is indicated by the grey lines. In the presence of the Zeeman field, the spectrum for the two spin states
(plotted in red and blue) is split, allowing for the appearance of a topological phase. (c) Phase diagram as a function of the Zeeman field
in the junction, EZ;J , given in units of the Thouless energy ET ¼ ðπ=2ÞvF=W and the phase difference ϕ. The solid lines are the phase
boundaries in the absence of any normal backscattering at the superconducting-normal interface, while the dashed lines correspond to a
junction transparency of 0.75 and a phase kFW þ φN ¼ 3π=8 as defined in Sec. III A. The arrows indicate the range of ϕ values between
the two zero energy crossings in (b) for which the system is topological.
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Spectrum across the phase transition
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Gap in the system
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Δ ≃ &1 ()*



1st-order topological phase transition
Consider a system with no phase bias. What happens as !" is varied?



∝ "#$%"&

'()
*+

= 0 '()
*+

= .
8

'()
*+

= .
4

'()
*+

= 3.
8

'()
*+

= .
2

3( = 0 mode bound states #4 = Δcos &
2 ±

'(
*+
)

Consider a system with no phase bias. What happens as '( is varied?

1st-order topological phase transition



Critical current and 1st order transition

Hart et al. Nature Phys. (2017)

The resulting phase diagram as a function of Zeeman
field and phase bias is shown in Fig. 1(c). Most strikingly,
the system is in a topological phase at ϕ ¼ π for arbitrary
Zeeman fields except at isolated values given by even
integer multiples of the ballistic Thouless energy of the
junction ET ¼ ðπ=2ÞvF=W. In contrast, at zero phase
difference, the system remains trivial throughout. As will
be shown in Sec. III A, this result generalizes to junctions
of arbitrary width as long as normal reflection can be
neglected and the system remains gapped. The Z2 topo-
logical index cannot change at ϕ ¼ 0, π because the
spectrum is always doubly degenerate at kx ¼ 0, and
topological phase transitions thus come in pairs. Hence,
an externally applied phase bias is a powerful experimental
knob that allows one to tune the system between topologi-
cally distinct phases, to a large extent independent of
microscopic parameters.
We can qualitatively understand the effect of weak

normal reflection on the phase diagram from the subgap
spectra shown in Fig. 1(b). Normal backscattering couples
left and right movers, lifting the degeneracy of Andreev
levels at ϕ ¼ 0, π. Hence, the system becomes topological
(trivial) in a small range of Zeeman fields at ϕ ¼ 0 (ϕ ¼ π).
The avoided level crossings translate to avoided crossings
of phase transition lines as indicated by the dashed lines in
Fig. 1(c). As long as normal reflection is not too strong, it
remains possible to induce a topological phase by a phase
bias in extended regions of parameter space.
We next consider the second configuration in which the

phase is determined by the condition that the ground-state
energy is minimal. Remarkably, we shall see in Sec. IV
that, in this case, the system self-tunes to the topological
phase in a broad range of Zeeman fields, exhibiting a first-
order topological phase transition. Such a transition will be
accompanied by an abrupt change in various thermody-
namic quantities characterizing the system, e.g., the mag-
netization, as well as in the energy gap in the bulk.
The origin of the first-order transition is that the phase

difference ϕGS that minimizes the ground-state energy
changes abruptly between two distinct values, one in the
trivial region and one in the topological region, at certain
values of the Zeeman field. As a consequence, the junction
is expected to show a hysteretic behavior as the Zeeman
field is swept at low temperatures. Moreover, we find that
the critical current exhibits a minimum at these values of
the Zeeman field as shown in Fig. 2(b). The critical current
can thus be used as a novel experimental probe of the
topological phase transitions in this configuration.
These findings can be understood semiclassically in the

limit EZ;J ≪ αkF ≪ μ. Because of the Rashba-induced
spin-momentum locking, the Zeeman field shifts the two
Fermi surfaces uniformly along ky in opposite directions as
depicted in Fig. 2(a). This induces a nonzero center-of-
mass momentum q ¼ 2EZ;J=vF in Cooper pairs traversing
the junction. Thus, the wave function of a Cooper pair

leaving one superconducting lead can be described by a
linear combination of singlet and triplet contributions
cosðqyÞjSiþ sinðqyÞjTi. For qW > π=2 (or, equivalently,
EZ;J > ET=2), the singlet wave function has opposite signs
at the two superconducting leads, and ϕGS switches from 0
to π. As discussed above, the system is trivial at ϕ ¼ 0 and
topological at ϕ ¼ π in a wide range of parameters. We
see, therefore, that for EZ;J > ET=2, the system self-tunes
into a topological phase via a first-order phase transition.
Moreover, at the 0−π transition point (EZ;J ¼ ET=2), the

(b)

(a)

FIG. 2. (a) A Zeeman field along x shifts the two Rashba-split
Fermi surfaces of the 2DEG in opposite directions along y. The
arrows indicate the orientation of the spin at each point on
the Fermi surface. (b) The phase difference ϕGS that minimizes
the ground-state energy (upper panel) and the critical current
modulation (lower panel) as a function of the Zeeman field
obtained numerically using a tight-binding model for the system
(see Appendix D 2 for details of the model). The parameters used
are as follows:W ¼ 5,WSC ¼ 10, t ¼ 1, α ¼ 0.1, μ ¼ −2.4, and
Δ ¼ 0.3 [31]. The left (right) panel corresponds to a temperature
of T ¼ 0.05Δ (T ¼ 0.3Δ). (Note that we set kB ¼ 1 throughout
the paper.) The light blue color indicates the region in the
parameter space for which the system is in the topological phase.
As the Zeeman field is varied, the system undergoes a series of
first-order topological phase transitions, in which ϕGS changes
abruptly between values lying in the topological and trivial
regions of the phase diagram. The critical current exhibits minima
at the points of the phase transitions. As the temperature is
increased, the minima become deeper.

FALKO PIENTKA et al. PHYS. REV. X 7, 021032 (2017)

021032-4



Majorana zero modes

above. At the phase transition, the gap at kx ¼ 0 closes, and
it is in fact also close to zero for other kx.
In addition, we calculate the gap numerically using the

scattering matrix approach (see Fig. 8). We consider a
narrow junction with Δ≃ 1=ðmW2Þ and find that a sizable
gap of order Δ can indeed be obtained for ϕ ¼ π with very
weak dependence on the chemical potential.

D. Majorana end modes

In the topological phase, we expect the system to host
Majorana bound states at its ends. To verify the appearance
of these zero-energy bound states in the proposed setup, we
calculate the local density of states (LDOS) close to the
boundaries of the system. To this end, we diagonalize a
tight-binding version of the Hamiltonian in Eq. (1) with
boundaries both along the x and the y dimensions (for
details of the model, see Appendix D 2). The resulting
LDOS as a function of the phase difference is shown in
Fig. 9. Indeed, a zero-energy state is present at the end
of the junction in a finite range of phase differences
around ϕ ¼ π.
Note that in the presence of the effective time-reversal

symmetry discussed in Sec. III B, multiple Majorana bound
states will appear at each end of the system. The number of
zero-energy states in this case will be determined by the
BDI Z invariant.

IV. FIRST-ORDER TOPOLOGICAL PHASE
TRANSITIONS AND THE CRITICAL CURRENT

In this section, we show that if the phase difference is not
imposed externally, the system will self-tune into the
topological phase in a wide range of Zeeman fields.
Using the bound-state spectrum obtained in Sec. III, we
calculate the ground-state energy of the system and the
Josephson current in the junction. We find that at a critical
value of the Zeeman field, the system undergoes a first-
order phase transition, in which the ground state of the
junction switches between values of ϕ corresponding to the
trivial and the topological phases, and that this transition is
accompanied by a minimum of the critical current.
To this end, we need to sum over the contributions of all

kx to the ground-state energy. In the analysis of the gap
presented in Sec. III C, we found that in the limit Δ ≪ μ, as
well as EZ;J ≪ αkF;1=2, and assuming EZ;L ¼ 0 and no
normal reflection, the spectrum for kx < kF;1 is given
by Eq. (10), with ET → ET;iðkxÞ and EZ;J → EZ;J sin θi
(such that the ratio EZ;J=ET is left unchanged). For
kF;1 < kx < kF;2, there is only a single spin species present
in the system, and thus only half of the bound states remain.
We first calculate the ground-state energy and the critical

current in the limit αkF ≪ μ. In this limit, ðkF;2−kF;1Þ=kF ¼
2kSO=kF → 0, and we can therefore neglect the contribution
ofmomenta in the range kF;1 < kx < kF;2.We later relax this
constraint and discuss how the results are altered.

FIG. 8. Induced gap as a function of systemparameters evaluated
in the continuum model using the scattering matrix approach (see
Appendix D 1 for details) for W ¼ 1ðmΔÞ−1=2, mα2 ¼ 9Δ, and
EZ;L ¼ 0. In the left panel, μ=Δ ¼ 20. The diamond-shaped gap
closing lines indicate the boundary between the trivial and the
topological regions. Additional regions of small gap occur in the
vicinity of BDI phase transitions, where the gap closes at nonzero
momenta. In the right panel,ϕ ¼ π, and a sizable topological gap is
obtained in a very broad range of Zeeman fields with hardly any
dependence on the chemical potential.

E/Δ

φ

LDOS
(a.u.)

bulk

 0

π

2 π

-1 -0.5  0  0.5  1
E/Δ

φ

LDOS
(a.u.)

edge

 0

π

2 π

-1 -0.5  0  0.5  1

FIG. 9. Local density of states at the edge (left panel) and in the
center (right panel) of the junction as a function of energy and
phase difference. In a range around ϕ ¼ π, a Majorana state
forms at the edge. The result is obtained numerically from a tight-
binding model (see Appendix D 2) using the following param-
eters (energies and length are in units of the hopping strength and
lattice spacing): α ¼ 0.5, EZ;J ¼ EZ;L ¼ 0.1, Δ ¼ 0.25, μ ¼
−3.75 (measured from the center of the tight-binding band),
junction width W ¼ 4, width of the superconducting leads
WSC ¼ 8, and length L ¼ 200. We plot a spatial average of
the density of states over a rectangle spanning the entire width of
the junction in the y directions and the first 10 sites from the edge
(left panel) or the most central 10 sites (right panel) in the x
direction. For presentation, the local density of states has been
convoluted with a Gaussian with a standard deviation of 0.02Δ.
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Zero bias peak at the edge and phase-dependent gap closings
A. Fornieri et al. (Nature, 2019), H. Ren et al. (Nature, 2019)



Fractional Josephson vortices
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2DEG

A. Stern, EB (PRL, 2019)



Fractional Josephson vortices

Topological Trivial

∼ "
#$ vortices carrying Majorana zero modes!
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A. Stern, EB (PRL, 2019)



Controlling Majoranas by supercurrents?

A. Stern, EB (PRL, 2019)



Tri-junction geometry
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A. Stern, EB (PRL, 2019)



Tri-junction geometry

1

2 3

$%&',),*(,): Gauge-invariant 
phases across junctions
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A. Stern, EB (PRL, 2019)



Manipulations by supercurrents
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A. Stern, EB (PRL, 2019)



Manipulations by supercurrents

1

2

#$% + #%' + #'$ = 0

Topological

Trivial

#$%
#'$

#'$

#$
#$

#'

A. Stern, EB (PRL, 2019)



Control by supercurrents
!"#$,&,': distance of  (th
Majorana from center

!$

!&

!'

∑*" = 2-
surface The red cycle implements 

braiding of  Majoranas.*

*Assuming the coupling between each pair is monotonic in the separation. 

To braid, we need to encircle a line in a 
three-dimensional parameter space.

A. Stern, EB (PRL, 2019)



Beyond Majoranas
How can one get protected zero modes 

with richer non-Abelian properties? 

Not in 1D systems – not even with interactions.

Non-Abelian Fractional quantum Hall states: 

Moore-Read (! = #
$), Read-Rezayi,…

Alternatively: start from the edge states of Abelian FQH states

to engineer new zero modes



Beyond Majoranas
Consider the effectively 1D boundaries

of 2D a topological phase
which supports (abelian) anyons.

B

q = e/m
1D “chiral” 
edge state

For example: 
n = 1/m Fractional Quantum Hall (Laughlin) state

e
2⇡i
m



Setups for fractionalized Majorana zero modes:

be explained using the concept of zero modes.
Such systems usually combine spin-orbit cou-
pling, superconductivity, and Zeeman coupling
to the electron spin (23–27). In superconductors,
operators that take the system from one energy
state to another are superpositions of electron
creation and annihilation operators. In certain
conditions, localized zero modes occur, in which
the amplitude for the creation and annihilation
operators is equal in magnitude, and the resulting
operator is Hermitian. These operators are com-
monly referred to as Majorana fermions. The non-
Abelian state of matter occurs when the zero
modes are spatially separated from one another.
Like all zero modes, Majorana fermions occur in
pairs. A pair of Majorana fermions form a com-
plex conventional fermion that spans a Hilbert
space of two dimensions. The quantum dimension
of a single Majorana fermion is therefore

ffiffiffi
2

p
.

Because a superconductor is gapped, Majo-
rana fermions in a superconducting system can
only occur where the superconducting gap closes
locally. In 2D systems, Majorana fermions are to
be found in vortex cores (16, 18), whereas in 1D
systems they are to be found at the interfaces be-
tween different types of superconductivity, or at
the system’s ends (17). In vortex cores of s-wave
superconductors, the presence of two spin direc-
tions per each electronic state does not allow for
an isolated Majorana fermion zero mode. The
places to look for isolated Majorana fermions are
superconductors with only one spin direction per
each electronic state. Examples are superconduc-
tors with spin-polarized p-wave pairing (16, 17),
surfaces of 3D and edges of 2D topological in-
sulators (23, 24), and 2D/1D systems featuring

both spin-orbit and Zeeman couplings (25–27) in
proximity to superconductors.

Recent experiments (28–32) support the
existence of Majorana fermions at the ends of
semiconducting wires in which strong spin-orbit
coupling, together with Zeeman coupling of the
spin to a magnetic field, creates a range of
densities at which spin degeneracy is removed.
The wires are made superconducting through
their proximity to a superconductor, and zero
modes are expected to form at their ends, which
are separated from metallic contacts by poten-
tial barriers. When a current is driven through the
wires in the absence of the end modes, the com-
bination of the barriers and the superconducting
gap suppresses the current at low voltages. The
Majorana end modes allow current to flow, re-
sulting in a sharp peak in the wires’ differential
conductance at zero voltage. This peak was ob-
served in several experiments (Fig. 3) and its char-
acteristics are consistent with Majorana end modes
in quantum wires.

Although these are encouraging observations,
it is still too early to identify them unambiguously
as originating fromMajorana fermions. The wires
used in the experiments were short enough that
coupling between the two ends may be expected
to split the degeneracy between the end modes.
Future experiments may observe the decay of this
splittingwith increasingwire length. Differentmea-
surements using the Josephson effect, Coulomb
blockade, and scanning tunneling microscopes
may provide additional information.

The Majorana fermions on the ends of quan-
tum wires offer useful insights into the physics
of non-Abelian systems. In the absence of the

Majorana fermions, the ground state of a clean
superconducting wire has an even number of
electrons paired to Cooper pairs. Adding another
electron is costly in energy, because this elec-
tron has no pairing partner. When the two
Majorana fermions are localized at the ends of
the wire, the odd electron can join at no cost of
energy. The two degenerate ground states are then
of different electron parities. When there are N
wires, there are 2N zero modes and 2N states,
with each wire having either an even or odd num-
ber of electrons. This manner of counting explains
the quantum dimension of

ffiffiffi
2

p
.

Magic State Distillation and
Surface Codes
Majorana fermions realize fusion and braiding
rules analogous to those of “Ising anyons.”
Interchanging Majorana fermions at the ends of
the same wire is equivalent to rotating the wire;
this preserves the parity of the electron number
while implementing a relative phase shift of p/2
between states of different parities. The braiding
of two Majorana fermions of two different
wires (Fig. 2) leads to a unitary transformation
that takes the two wires from a state of well-
defined parities to a state that is a superposition
of even and odd parities, with equal probabilities.
For example, the state |even1,even2〉 is transformed
to the state 1/

ffiffiffi
2

p
[|even1,even2〉 ± i|odd1,odd2〉],

where the sign of the second term depends on
the details of the interchange. Because only two
types of interchanges are possible—intrawire and
interwire—there is no topologically protected way
to turn two wires that start, say, at even parities
|even1,even2〉 into an arbitrary superposition of the

ν = 1/m

A B
B

B

ν = 1/m

ν = –1/m ν = 1/m

SC

SC

Fig. 4. Fractionalized Majorana zero modes at the interface between the
superconductor and tunneling regions. (A) An electron-hole bilayer where the
two layers are in a FQHE where the Hall conductivities are quantized at n =±1/m
(in units of e2/h), wherem is an odd integer. The direction of the edge modes is
indicated by the blue arrows. An s-wave superconductor (SC; orange) coupled to
the edge of the two-layer system can gap the edgemodes. In nonsuperconducting

regions, spin-flipping electron tunneling between the top and bottom layer (black
arrows) opens a gap on the edge. These can be enhanced by coupling the edge to
a ferromagnet. Two layers of graphene may be a possible realization for such a
system. (B) Single-layer realization, with a trench cut in a FQHE state with n = 1/m
exposing counterpropagating edge states. In spin-polarized quantum Hall states,
spin-orbit interaction would couple these modes to a superconductor.
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be explained using the concept of zero modes.
Such systems usually combine spin-orbit cou-
pling, superconductivity, and Zeeman coupling
to the electron spin (23–27). In superconductors,
operators that take the system from one energy
state to another are superpositions of electron
creation and annihilation operators. In certain
conditions, localized zero modes occur, in which
the amplitude for the creation and annihilation
operators is equal in magnitude, and the resulting
operator is Hermitian. These operators are com-
monly referred to as Majorana fermions. The non-
Abelian state of matter occurs when the zero
modes are spatially separated from one another.
Like all zero modes, Majorana fermions occur in
pairs. A pair of Majorana fermions form a com-
plex conventional fermion that spans a Hilbert
space of two dimensions. The quantum dimension
of a single Majorana fermion is therefore

ffiffiffi
2

p
.

Because a superconductor is gapped, Majo-
rana fermions in a superconducting system can
only occur where the superconducting gap closes
locally. In 2D systems, Majorana fermions are to
be found in vortex cores (16, 18), whereas in 1D
systems they are to be found at the interfaces be-
tween different types of superconductivity, or at
the system’s ends (17). In vortex cores of s-wave
superconductors, the presence of two spin direc-
tions per each electronic state does not allow for
an isolated Majorana fermion zero mode. The
places to look for isolated Majorana fermions are
superconductors with only one spin direction per
each electronic state. Examples are superconduc-
tors with spin-polarized p-wave pairing (16, 17),
surfaces of 3D and edges of 2D topological in-
sulators (23, 24), and 2D/1D systems featuring

both spin-orbit and Zeeman couplings (25–27) in
proximity to superconductors.

Recent experiments (28–32) support the
existence of Majorana fermions at the ends of
semiconducting wires in which strong spin-orbit
coupling, together with Zeeman coupling of the
spin to a magnetic field, creates a range of
densities at which spin degeneracy is removed.
The wires are made superconducting through
their proximity to a superconductor, and zero
modes are expected to form at their ends, which
are separated from metallic contacts by poten-
tial barriers. When a current is driven through the
wires in the absence of the end modes, the com-
bination of the barriers and the superconducting
gap suppresses the current at low voltages. The
Majorana end modes allow current to flow, re-
sulting in a sharp peak in the wires’ differential
conductance at zero voltage. This peak was ob-
served in several experiments (Fig. 3) and its char-
acteristics are consistent with Majorana end modes
in quantum wires.

Although these are encouraging observations,
it is still too early to identify them unambiguously
as originating fromMajorana fermions. The wires
used in the experiments were short enough that
coupling between the two ends may be expected
to split the degeneracy between the end modes.
Future experiments may observe the decay of this
splittingwith increasingwire length. Differentmea-
surements using the Josephson effect, Coulomb
blockade, and scanning tunneling microscopes
may provide additional information.

The Majorana fermions on the ends of quan-
tum wires offer useful insights into the physics
of non-Abelian systems. In the absence of the

Majorana fermions, the ground state of a clean
superconducting wire has an even number of
electrons paired to Cooper pairs. Adding another
electron is costly in energy, because this elec-
tron has no pairing partner. When the two
Majorana fermions are localized at the ends of
the wire, the odd electron can join at no cost of
energy. The two degenerate ground states are then
of different electron parities. When there are N
wires, there are 2N zero modes and 2N states,
with each wire having either an even or odd num-
ber of electrons. This manner of counting explains
the quantum dimension of

ffiffiffi
2

p
.

Magic State Distillation and
Surface Codes
Majorana fermions realize fusion and braiding
rules analogous to those of “Ising anyons.”
Interchanging Majorana fermions at the ends of
the same wire is equivalent to rotating the wire;
this preserves the parity of the electron number
while implementing a relative phase shift of p/2
between states of different parities. The braiding
of two Majorana fermions of two different
wires (Fig. 2) leads to a unitary transformation
that takes the two wires from a state of well-
defined parities to a state that is a superposition
of even and odd parities, with equal probabilities.
For example, the state |even1,even2〉 is transformed
to the state 1/

ffiffiffi
2

p
[|even1,even2〉 ± i|odd1,odd2〉],

where the sign of the second term depends on
the details of the interchange. Because only two
types of interchanges are possible—intrawire and
interwire—there is no topologically protected way
to turn two wires that start, say, at even parities
|even1,even2〉 into an arbitrary superposition of the
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ν = –1/m ν = 1/m

SC

SC

Fig. 4. Fractionalized Majorana zero modes at the interface between the
superconductor and tunneling regions. (A) An electron-hole bilayer where the
two layers are in a FQHE where the Hall conductivities are quantized at n =±1/m
(in units of e2/h), wherem is an odd integer. The direction of the edge modes is
indicated by the blue arrows. An s-wave superconductor (SC; orange) coupled to
the edge of the two-layer system can gap the edgemodes. In nonsuperconducting

regions, spin-flipping electron tunneling between the top and bottom layer (black
arrows) opens a gap on the edge. These can be enhanced by coupling the edge to
a ferromagnet. Two layers of graphene may be a possible realization for such a
system. (B) Single-layer realization, with a trench cut in a FQHE state with n = 1/m
exposing counterpropagating edge states. In spin-polarized quantum Hall states,
spin-orbit interaction would couple these modes to a superconductor.
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e tunneling

FQH state

Lindner, EB, Stern, Refael (PRX, 2012); 
Clarke, Alicea, Shtengel (Nature Comm., 2013); 

Cheng (PRB, 2013)

Beyond Majorana zero modes



Fractionalized Majorana (parafermion) 
modes

Three distinct phases of the edge:
1. Gapless
2. Gapped, !" dominated: ⟨$%&'⟩ ≠ 0
3. Gapped, !+ dominated: ⟨$%&,⟩ ≠ 0
Between 2 and 3, a new type of
“fractionalized Marjoana” zero mode!

(At these points, a Laughlin q.p. can be 
injected at no energy cost)



Ground state degeneracy

be explained using the concept of zero modes.
Such systems usually combine spin-orbit cou-
pling, superconductivity, and Zeeman coupling
to the electron spin (23–27). In superconductors,
operators that take the system from one energy
state to another are superpositions of electron
creation and annihilation operators. In certain
conditions, localized zero modes occur, in which
the amplitude for the creation and annihilation
operators is equal in magnitude, and the resulting
operator is Hermitian. These operators are com-
monly referred to as Majorana fermions. The non-
Abelian state of matter occurs when the zero
modes are spatially separated from one another.
Like all zero modes, Majorana fermions occur in
pairs. A pair of Majorana fermions form a com-
plex conventional fermion that spans a Hilbert
space of two dimensions. The quantum dimension
of a single Majorana fermion is therefore

ffiffiffi
2

p
.

Because a superconductor is gapped, Majo-
rana fermions in a superconducting system can
only occur where the superconducting gap closes
locally. In 2D systems, Majorana fermions are to
be found in vortex cores (16, 18), whereas in 1D
systems they are to be found at the interfaces be-
tween different types of superconductivity, or at
the system’s ends (17). In vortex cores of s-wave
superconductors, the presence of two spin direc-
tions per each electronic state does not allow for
an isolated Majorana fermion zero mode. The
places to look for isolated Majorana fermions are
superconductors with only one spin direction per
each electronic state. Examples are superconduc-
tors with spin-polarized p-wave pairing (16, 17),
surfaces of 3D and edges of 2D topological in-
sulators (23, 24), and 2D/1D systems featuring

both spin-orbit and Zeeman couplings (25–27) in
proximity to superconductors.

Recent experiments (28–32) support the
existence of Majorana fermions at the ends of
semiconducting wires in which strong spin-orbit
coupling, together with Zeeman coupling of the
spin to a magnetic field, creates a range of
densities at which spin degeneracy is removed.
The wires are made superconducting through
their proximity to a superconductor, and zero
modes are expected to form at their ends, which
are separated from metallic contacts by poten-
tial barriers. When a current is driven through the
wires in the absence of the end modes, the com-
bination of the barriers and the superconducting
gap suppresses the current at low voltages. The
Majorana end modes allow current to flow, re-
sulting in a sharp peak in the wires’ differential
conductance at zero voltage. This peak was ob-
served in several experiments (Fig. 3) and its char-
acteristics are consistent with Majorana end modes
in quantum wires.

Although these are encouraging observations,
it is still too early to identify them unambiguously
as originating fromMajorana fermions. The wires
used in the experiments were short enough that
coupling between the two ends may be expected
to split the degeneracy between the end modes.
Future experiments may observe the decay of this
splittingwith increasingwire length. Differentmea-
surements using the Josephson effect, Coulomb
blockade, and scanning tunneling microscopes
may provide additional information.

The Majorana fermions on the ends of quan-
tum wires offer useful insights into the physics
of non-Abelian systems. In the absence of the

Majorana fermions, the ground state of a clean
superconducting wire has an even number of
electrons paired to Cooper pairs. Adding another
electron is costly in energy, because this elec-
tron has no pairing partner. When the two
Majorana fermions are localized at the ends of
the wire, the odd electron can join at no cost of
energy. The two degenerate ground states are then
of different electron parities. When there are N
wires, there are 2N zero modes and 2N states,
with each wire having either an even or odd num-
ber of electrons. This manner of counting explains
the quantum dimension of

ffiffiffi
2

p
.

Magic State Distillation and
Surface Codes
Majorana fermions realize fusion and braiding
rules analogous to those of “Ising anyons.”
Interchanging Majorana fermions at the ends of
the same wire is equivalent to rotating the wire;
this preserves the parity of the electron number
while implementing a relative phase shift of p/2
between states of different parities. The braiding
of two Majorana fermions of two different
wires (Fig. 2) leads to a unitary transformation
that takes the two wires from a state of well-
defined parities to a state that is a superposition
of even and odd parities, with equal probabilities.
For example, the state |even1,even2〉 is transformed
to the state 1/

ffiffiffi
2

p
[|even1,even2〉 ± i|odd1,odd2〉],

where the sign of the second term depends on
the details of the interchange. Because only two
types of interchanges are possible—intrawire and
interwire—there is no topologically protected way
to turn two wires that start, say, at even parities
|even1,even2〉 into an arbitrary superposition of the
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ν = –1/m ν = 1/m
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SC

Fig. 4. Fractionalized Majorana zero modes at the interface between the
superconductor and tunneling regions. (A) An electron-hole bilayer where the
two layers are in a FQHE where the Hall conductivities are quantized at n =±1/m
(in units of e2/h), wherem is an odd integer. The direction of the edge modes is
indicated by the blue arrows. An s-wave superconductor (SC; orange) coupled to
the edge of the two-layer system can gap the edgemodes. In nonsuperconducting

regions, spin-flipping electron tunneling between the top and bottom layer (black
arrows) opens a gap on the edge. These can be enhanced by coupling the edge to
a ferromagnet. Two layers of graphene may be a possible realization for such a
system. (B) Single-layer realization, with a trench cut in a FQHE state with n = 1/m
exposing counterpropagating edge states. In spin-polarized quantum Hall states,
spin-orbit interaction would couple these modes to a superconductor.
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be explained using the concept of zero modes.
Such systems usually combine spin-orbit cou-
pling, superconductivity, and Zeeman coupling
to the electron spin (23–27). In superconductors,
operators that take the system from one energy
state to another are superpositions of electron
creation and annihilation operators. In certain
conditions, localized zero modes occur, in which
the amplitude for the creation and annihilation
operators is equal in magnitude, and the resulting
operator is Hermitian. These operators are com-
monly referred to as Majorana fermions. The non-
Abelian state of matter occurs when the zero
modes are spatially separated from one another.
Like all zero modes, Majorana fermions occur in
pairs. A pair of Majorana fermions form a com-
plex conventional fermion that spans a Hilbert
space of two dimensions. The quantum dimension
of a single Majorana fermion is therefore

ffiffiffi
2

p
.

Because a superconductor is gapped, Majo-
rana fermions in a superconducting system can
only occur where the superconducting gap closes
locally. In 2D systems, Majorana fermions are to
be found in vortex cores (16, 18), whereas in 1D
systems they are to be found at the interfaces be-
tween different types of superconductivity, or at
the system’s ends (17). In vortex cores of s-wave
superconductors, the presence of two spin direc-
tions per each electronic state does not allow for
an isolated Majorana fermion zero mode. The
places to look for isolated Majorana fermions are
superconductors with only one spin direction per
each electronic state. Examples are superconduc-
tors with spin-polarized p-wave pairing (16, 17),
surfaces of 3D and edges of 2D topological in-
sulators (23, 24), and 2D/1D systems featuring

both spin-orbit and Zeeman couplings (25–27) in
proximity to superconductors.

Recent experiments (28–32) support the
existence of Majorana fermions at the ends of
semiconducting wires in which strong spin-orbit
coupling, together with Zeeman coupling of the
spin to a magnetic field, creates a range of
densities at which spin degeneracy is removed.
The wires are made superconducting through
their proximity to a superconductor, and zero
modes are expected to form at their ends, which
are separated from metallic contacts by poten-
tial barriers. When a current is driven through the
wires in the absence of the end modes, the com-
bination of the barriers and the superconducting
gap suppresses the current at low voltages. The
Majorana end modes allow current to flow, re-
sulting in a sharp peak in the wires’ differential
conductance at zero voltage. This peak was ob-
served in several experiments (Fig. 3) and its char-
acteristics are consistent with Majorana end modes
in quantum wires.

Although these are encouraging observations,
it is still too early to identify them unambiguously
as originating fromMajorana fermions. The wires
used in the experiments were short enough that
coupling between the two ends may be expected
to split the degeneracy between the end modes.
Future experiments may observe the decay of this
splittingwith increasingwire length. Differentmea-
surements using the Josephson effect, Coulomb
blockade, and scanning tunneling microscopes
may provide additional information.

The Majorana fermions on the ends of quan-
tum wires offer useful insights into the physics
of non-Abelian systems. In the absence of the

Majorana fermions, the ground state of a clean
superconducting wire has an even number of
electrons paired to Cooper pairs. Adding another
electron is costly in energy, because this elec-
tron has no pairing partner. When the two
Majorana fermions are localized at the ends of
the wire, the odd electron can join at no cost of
energy. The two degenerate ground states are then
of different electron parities. When there are N
wires, there are 2N zero modes and 2N states,
with each wire having either an even or odd num-
ber of electrons. This manner of counting explains
the quantum dimension of

ffiffiffi
2

p
.

Magic State Distillation and
Surface Codes
Majorana fermions realize fusion and braiding
rules analogous to those of “Ising anyons.”
Interchanging Majorana fermions at the ends of
the same wire is equivalent to rotating the wire;
this preserves the parity of the electron number
while implementing a relative phase shift of p/2
between states of different parities. The braiding
of two Majorana fermions of two different
wires (Fig. 2) leads to a unitary transformation
that takes the two wires from a state of well-
defined parities to a state that is a superposition
of even and odd parities, with equal probabilities.
For example, the state |even1,even2〉 is transformed
to the state 1/

ffiffiffi
2

p
[|even1,even2〉 ± i|odd1,odd2〉],

where the sign of the second term depends on
the details of the interchange. Because only two
types of interchanges are possible—intrawire and
interwire—there is no topologically protected way
to turn two wires that start, say, at even parities
|even1,even2〉 into an arbitrary superposition of the
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Fig. 4. Fractionalized Majorana zero modes at the interface between the
superconductor and tunneling regions. (A) An electron-hole bilayer where the
two layers are in a FQHE where the Hall conductivities are quantized at n =±1/m
(in units of e2/h), wherem is an odd integer. The direction of the edge modes is
indicated by the blue arrows. An s-wave superconductor (SC; orange) coupled to
the edge of the two-layer system can gap the edgemodes. In nonsuperconducting

regions, spin-flipping electron tunneling between the top and bottom layer (black
arrows) opens a gap on the edge. These can be enhanced by coupling the edge to
a ferromagnet. Two layers of graphene may be a possible realization for such a
system. (B) Single-layer realization, with a trench cut in a FQHE state with n = 1/m
exposing counterpropagating edge states. In spin-polarized quantum Hall states,
spin-orbit interaction would couple these modes to a superconductor.
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[ei⇡Q̂, H] = 0Fermion parity conservation in SC region:

On the edge of a fractional quantum Hall 
phase, Q is fractional: Q̂ =

n

m
n = 0, . . . , 2m� 1

2m degenerate 
G.S. per SC 

region!

Lindner, EB, Stern, Refael (PRX, 2012); 
Clarke, Alicea, Shtengel (Nature Comm., 2013); 

Cheng (PRB, 2013)



Braiding

Braiding domain walls 3 and 4: 

Example: m=3

(Majorana) Ä (Something new!)


