Majorana zero modes and their generalizations in condensed matter

Erez Berg

Arbel Haim, Anna Keselman, Falko Pientka, Yang Peng , F. Setiawan Karsten Flensberg, Bert Halperin, Netanel Lindner, Felix von Oppen, Yuval Oreg, Frank Pollmann, Gil Refael, Ady Stern, Ari Turner Amir Yacoby, Charlie Marcus, Fabrizio Nichele, Antonio Fornieri

Plan

- A few words about topological order
- p-wave superconductors
- Kitaev's chain
- Experimental platforms and physical signatures
- New platform: topological superconductivity in planar
 Josephson junctions
- Beyond Majoranas

Topological states of matter

- Gapped states of matter, do not break any symmetry
- Cannot be deformed adiabatically to "trivial" (atomic) insulator: phase transition *must occur* along the way
- "Hidden" (non-local, or "topological") order in the ground state wavefunction

Examples:

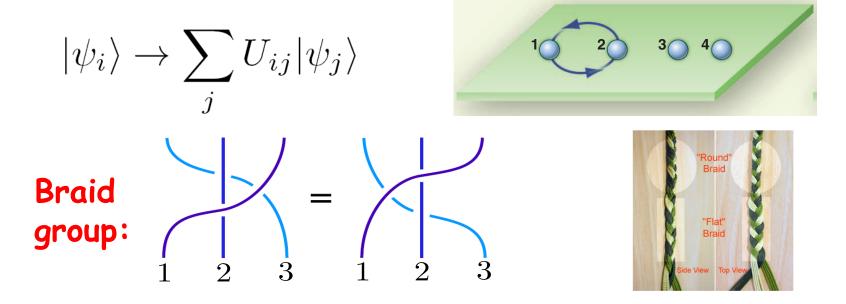
- Topological insulators (2D and 3D), Haldane S=1 chain: "Symmtry Protected Topological phases" (SPT), distinct from the trivial phase so long as symmetry is maintained
- Quantum Hall effect

Topologically ordered states of matter (e.g. fractional QH in D=2):

- Point-like excitations with fractionalized statistics (anyons!), sometimes with fractional quantum numbers (e.g. charge)
- Ground state degeneracy depends on topology (genus) of manifold

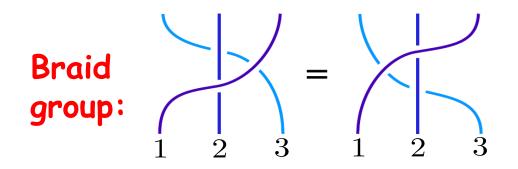
Non-Abelian statistics

- Topologically ordered states can exhibit *Non-Abelian* statistics
- In the presence of excitations ("quasi-particles"), ground state is *multiply degenerate*
- Moving excitations around each other ("braiding") implements unitary transformation that depends on *topology*, not geometry, of path
- Interactions necessary (true for all topologically ordered states)

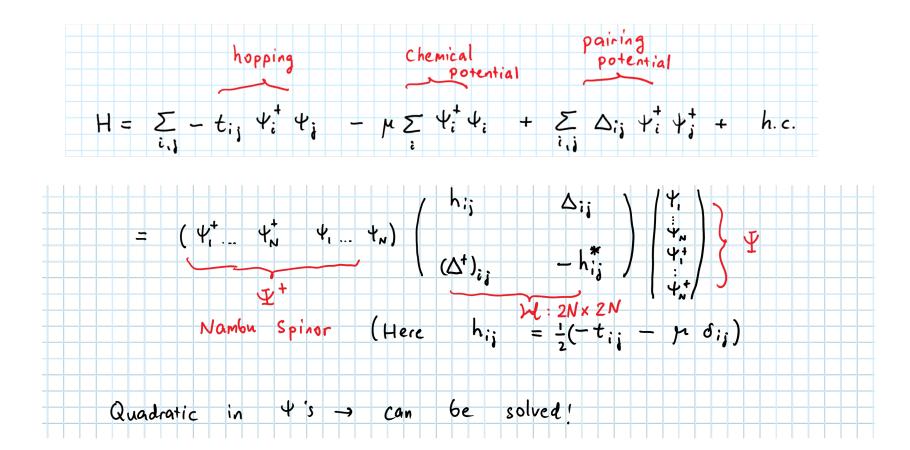


This talk: non-Abelian properties of zero modes at edges and defects

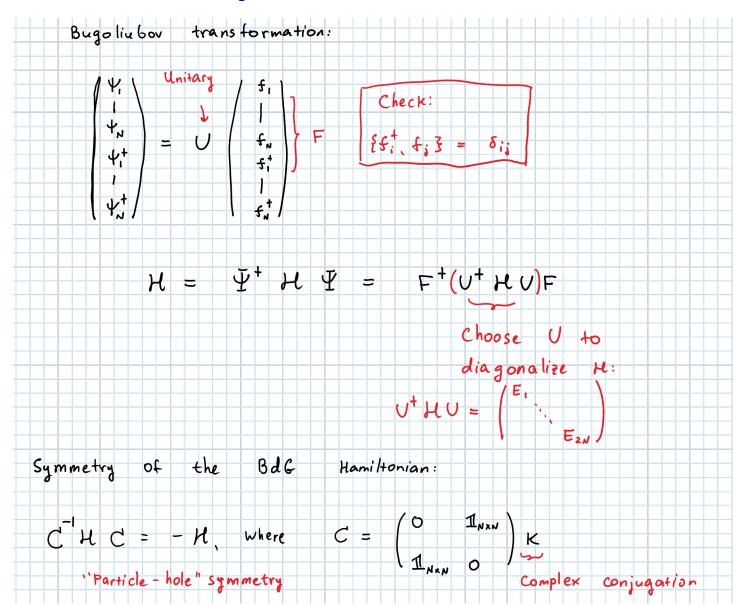
- Zero modes that appear at edges/defects (e.g., vortices) of certain kinds of superconductors
- Do not require topological order; no dependence of g.s. degeneracy on topology of manifold; can appear without interactions (or interactions treated within mean-field theory)
- Do nevertheless support robust g.s. degeneracy (not symmetry protected) and non-Abelian statistics



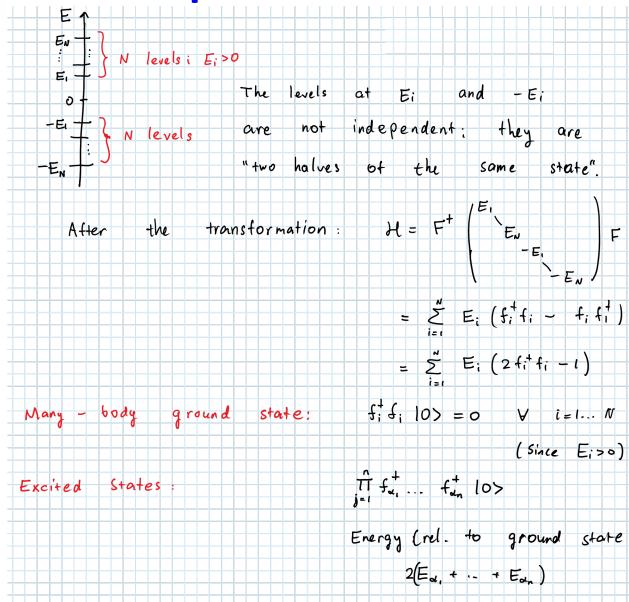
BdG formalism and p-wave superconductors



BdG formalism and p-wave superconductors



BdG formalism and p-wave superconductors



$$H = \sum_{j} \left(-tc_{i}^{\dagger}c_{i+1} + H.c. - \mu c_{i}^{\dagger}c_{i} + \Delta c_{i}^{\dagger}c_{i+1}^{\dagger} + H.c. \right)$$

Fourier transform:

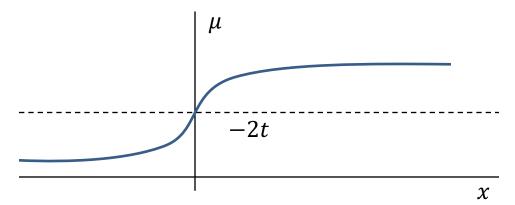
$$H = \int dk \left(-2t\cos k - \mu\right) c_k^{\dagger} c_k + \Delta \sin k c_k^{\dagger} c_{-k}^{\dagger} + h.c.$$

Spectrum:

$$E_k = \pm \sqrt{(-2t\cos k - \mu)^2 + |\Delta|^2 \sin^2 k}.$$

Phase transition at $\mu = \pm 2t$, at k = 0, $k = \pi$, respectively.

Change μ slowly in space



$$H = \int dk \left(-2t\cos k - \mu\right) c_k^{\dagger} c_k + \Delta \sin k_x c_k^{\dagger} c_{-k}^{\dagger} + h.c.$$

For small k, expand to first order in k, and go back to real space:

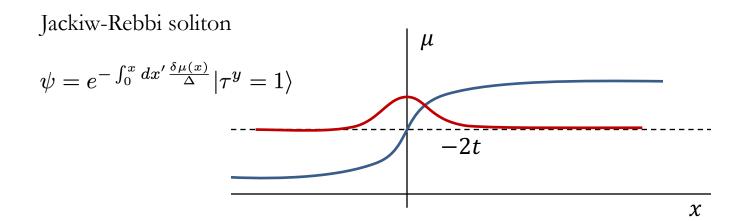
$$H \approx \begin{pmatrix} -\delta\mu(x) & -i\Delta\partial_x \\ -i\Delta\partial_x & \delta\mu(x) \end{pmatrix}$$
$$H = -\delta\mu(x)\tau^z - \Delta\tau^x i\partial_x.$$

Look for zero energy solution:

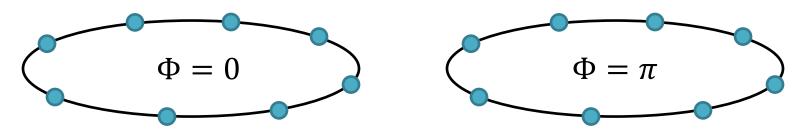
$$\left[-\delta\mu(x)\tau^z - i\Delta\tau^x\partial_x\right]\psi = 0$$

Multiply by $i\tau^x$:

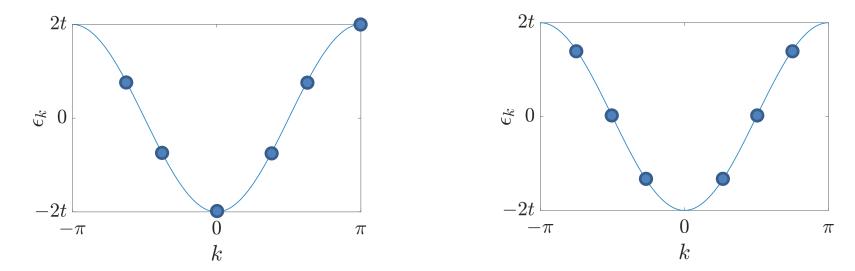
$$\left[\delta\mu(x)\tau^y + \Delta\partial_x\right]\psi = 0$$

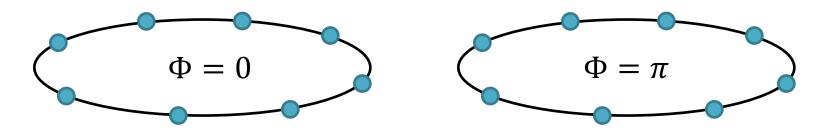


- We would like to identify $|\mu| < 2t$ and $|\mu| > 2t$ as two different phases. But what distinguishes the two phases?
- In the "topological" phase ($|\mu| < 2t$):



Fermion parity of the ground state is opposite!





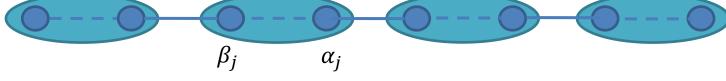
Topological phase: fermion parities of ground states with periodic and anti-periodic b.c. are opposite.

Consequences:

- Trivial and topological phases must be separated by gap closing (fermion parity in one sector must switch)
- In a non-interacting translationally invariant system, topological phase transition is characterized by gap closing either at k=0 or $k=\pi$

Another derivation of the existence of zero modes (Kitaev)

$$H = \sum_{j} -tc_{j}^{\dagger}c_{j+1} + \Delta c_{j}^{\dagger}c_{j+1}^{\dagger} + H.c. - \mu c_{j}^{\dagger}c_{j}$$



Write in terms of Majorana operators:

$$c_j = rac{lpha_j + ieta_j}{2} \qquad egin{array}{c} lpha_j = c_j + c_j^\dagger \ eta_j = c_j - ic_j^\dagger \end{array}$$

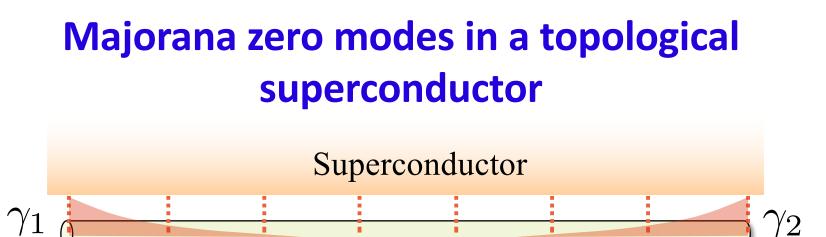
$$\alpha^{\dagger} = \alpha, \, \beta^{\dagger} = \beta, \, \{\alpha_i, \beta_j\} = \delta_{ij}$$

$$H = \sum_{j} -(2t+2\Delta)i\alpha_{j}\beta_{j+1} + (2t-2\Delta)i\beta_{j}\alpha_{j+1} - \mu(i\alpha_{j}\beta_{j} - i\beta_{j}\alpha_{j}).$$

Majoranas at the ends $(t = \Delta)$:

$$\gamma_L = \beta_1, \gamma_R = \alpha_N$$

 $\gamma_{R,L}^{\dagger} = \gamma_{R,L}.$



γ2

- **Gapped system, two degenerate ground states, characterized by** having a different fermion parity
- **Defects** (in this case, the edges of the system) carry protected • zero modes
- Ground state degeneracy is "topological": no local ۲ measurement can distinguish between the two states!
- Useful as a "quantum bit"?

Kitaev (2001), Oreg (2009), Lutchyn (2009),...

Experimental realizations and signatures

Rule of thumb: whenever we have a single Fermi surface in the normal state, if we manage to gap it, we will get a topological superconducting state.

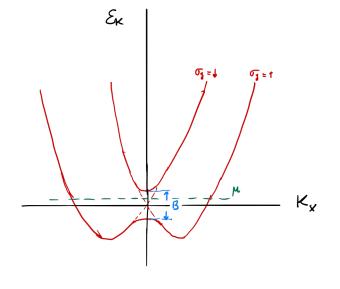
Rule of thumb (2): the topological and trivial states must be separated by a gap closing either at k = 0 or $k = \pi$.

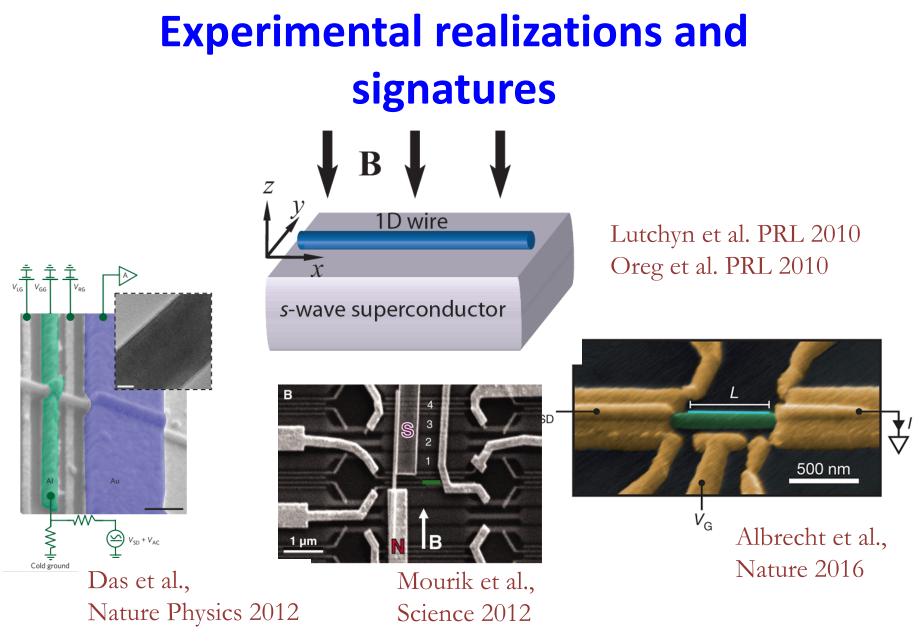
Quantum wire with spin-orbit coupling proximity coupled to a superconductor (Oreg et al., Lutchyn et al. (2010)):

$$H = c_{k_x}^{\dagger} \left(\frac{k_x^2}{2m} - \alpha k_x \sigma^y - \mu - B\sigma^x \right) c_{k_x} + \Delta c_{k_x \uparrow}^{\dagger} c_{k_x \downarrow}^{\dagger}$$

Topological transition at:

$$B = \pm \sqrt{\left|\Delta\right|^2 + \mu^2}$$



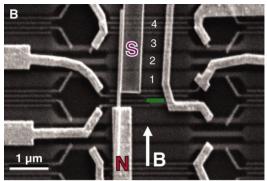


Rokhinson et al., Nature Phys. (2012), Deng et al., Nano Lett. (2012), Churchill et al., Phys. Rev. B (2013), Nadj-Perge, Science (2014)

Experimental signatures

Zero-bias peak in conductance $G(V) = \frac{dI}{dV}$ from normal metal.

Ideally, $G(V \rightarrow 0) = \frac{2e^2}{h}$ if there is only one channel in the metal coupled to the superconducting wire. Zhang, Kouwenhoven et al. (2018)



 4π periodic Josephson effect between two topological SC $H_J = i\Gamma e^{i\phi/2}\gamma_1\gamma_2 + H.c. = i\Gamma\gamma_1\gamma_2\cos(\phi/2).$ Wiedenmann, Molenkamp et al. (2016)

Disappearance of even-odd effect in electron addition spectrum:

$$E(N, V_G) = \frac{e^2(N - CV_G)^2}{2C} + f(N).$$

Usually in a superconductor, $f(N) = \Delta \frac{1-(-1)^N}{2}$; in a topological SC, $\Delta = 0$. Albrecht, Marcus et al. (2016)

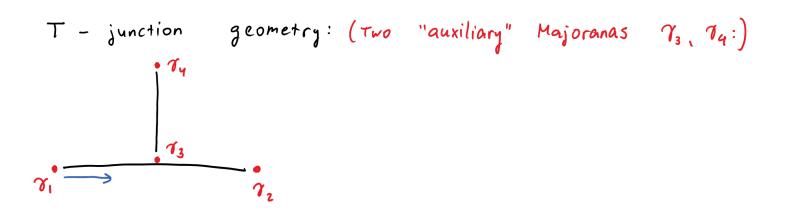
Braiding Majorana zero modes

How do the operators
$$T_{1,2}$$
 transform under braiding?
 $T_1 \rightarrow T_1' = \bigcup_{12}^{\pm} T_1 \bigcup_{12} \bigcup_{12} U_{12}$: Unitary adiabatic evolution
 $T_2 \rightarrow T_2' = \bigcup_{12}^{\pm} T_2 \bigcup_{12}$ Operator.
We expect
 $T_1' \simeq T_2$ (up to a phase)
 $T_2' \simeq T_1$
 $(T_1')^2 = \bigcup_{12}^{\pm} T_1 \bigcup_{12} \bigcup_{12} = 1 =>$ playes are ± 1
suppose $T_1'' = T_2$
transformation has to conserve iT_1T_2 (fermion parity of $1,2$)
 $\rightarrow T_2' = -T_1!$
One can cleck that the transformation that does this is
 $\bigcup_{12} = \frac{e^{i\frac{1}{2}}}{2} \frac{e^{\frac{1}{2}}}{4} T_1 T_2}$
 $phase we can
determine from the present considerations.$

Braiding Majorana zero modes (2)

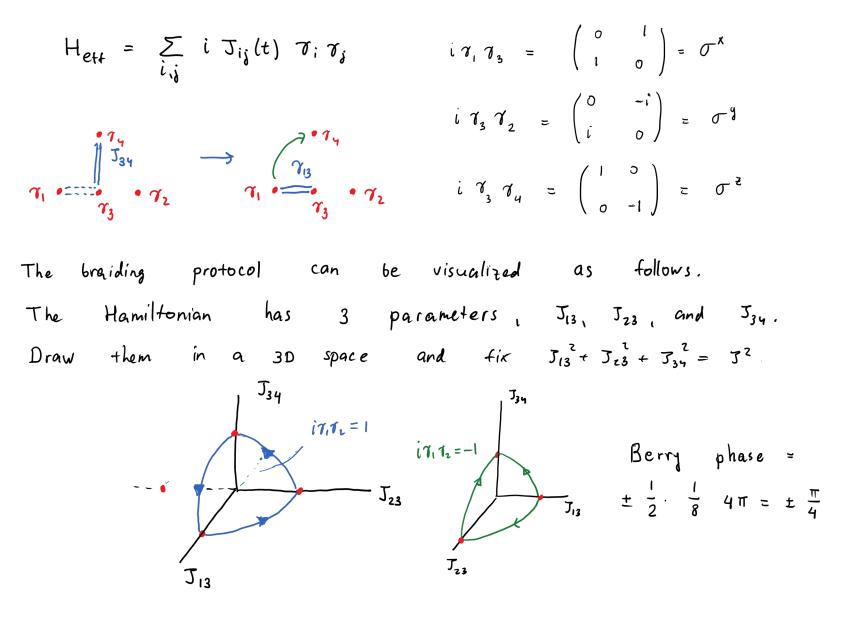
(Alicea, Oreg, von Oppen, Refael, Fisher 10')

$$\gamma_1$$
 γ_2 "exchange" γ_1, γ_2 ?



change position of r_i (e.g., by applying gate potentials):

Braiding Majorana zero modes (3)

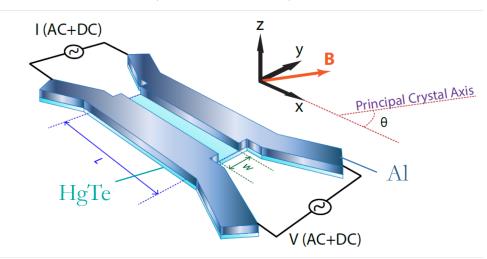


Plan

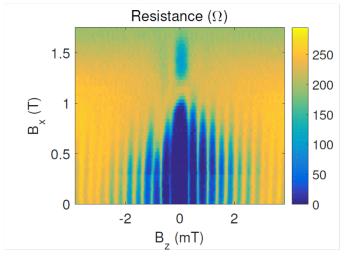
- A few words about topological order
- p-wave superconductors
- Kitaev's chain
- Experimental platforms and physical signatures
- New platform: topological superconductivity in planar
 Josephson junctions
- Beyond Majoranas

New platform: planar Josephson junctions

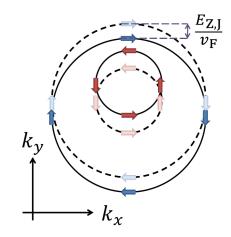
Hart et al. experiment (Yacoby group, 2017):



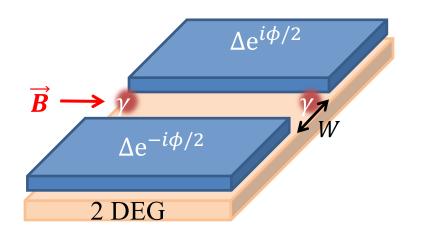
As a function of B_x , the critical current vanishes and recovers:



Shifted Fermi surfaces due to Zeeman field $B \parallel x$:



New platform: planar Josephson junctions



Ingredients:

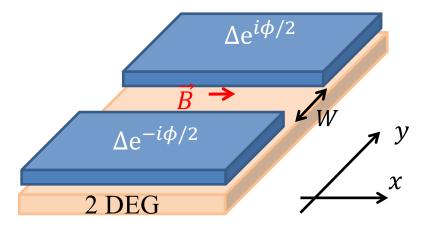
- ✓ 1D
- ✓ Spin-orbit
- ✓ Superconductivity
- ✓ Magnetic field

New features:

- Robust topological phase, weak dependence on chemical potential
- Can tune itself the topological phase!

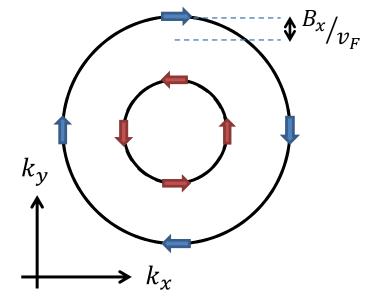
Pientka, Keselman, EB, Yacoby, Stern, Halperin (PRX, 2017); Hell, Leijnse, Flensberg (PRL, 2017)

Setup and Model

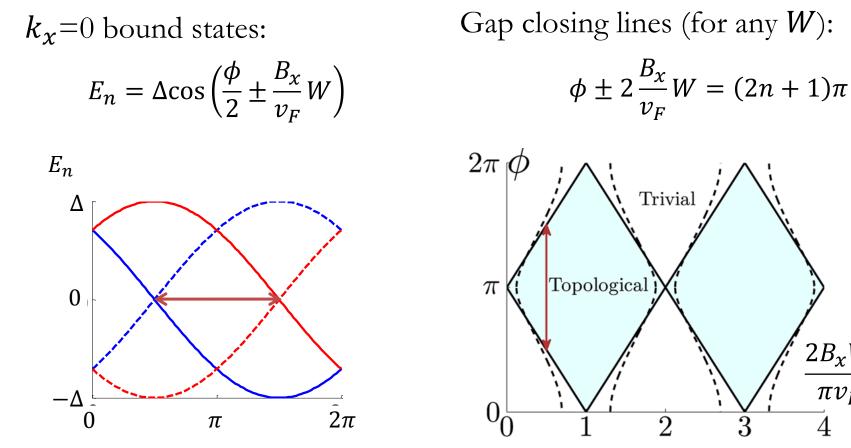


Hamiltonian in the normal region:

$$H_0 = \frac{k_x^2 - \partial_y^2}{2m} - \mu + \alpha (k_x \sigma_y + i \partial_y \sigma_x) + B_x \sigma_x$$



Phase Diagram



No explicit dependence on μ !

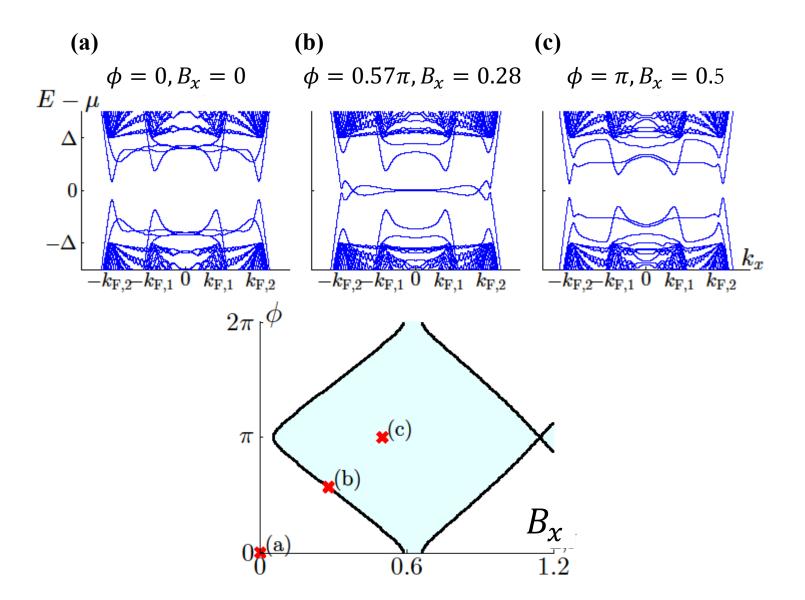
3

 $2B_{x}W$

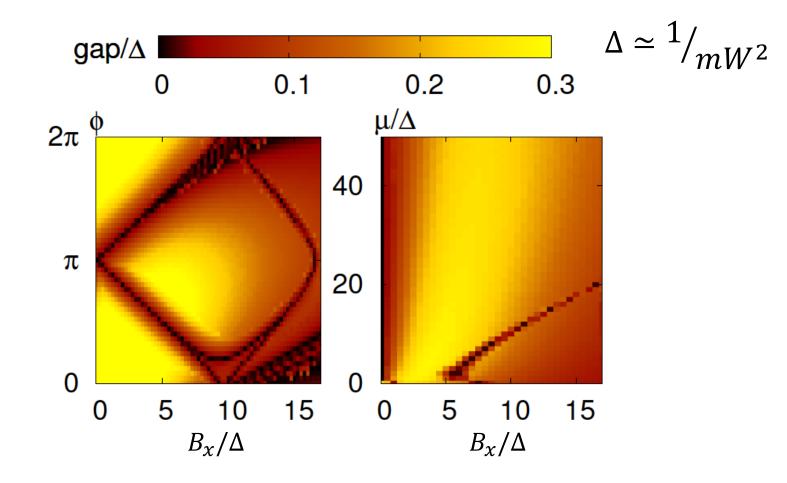
 πv_F

4

Spectrum across the phase transition



Gap in the system



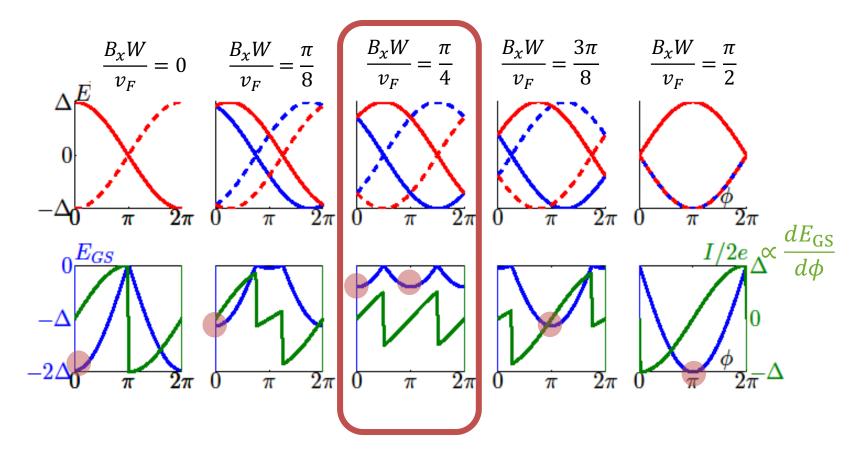
1st-order topological phase transition

Consider a system with no phase bias. What happens as B_x is varied?

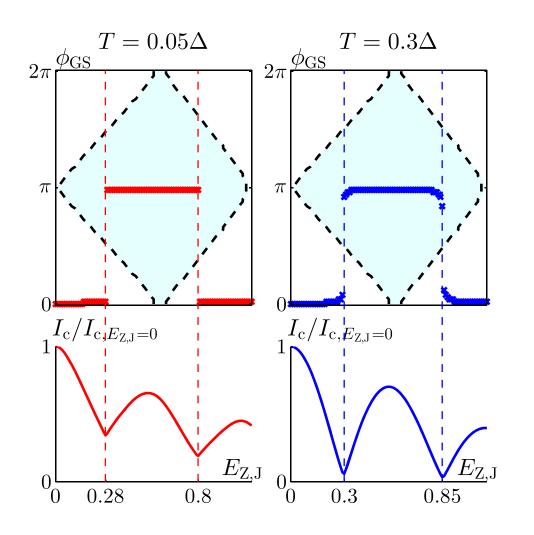
1st-order topological phase transition

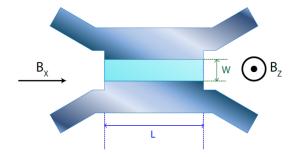
Consider a system with no phase bias. What happens as B_x is varied?

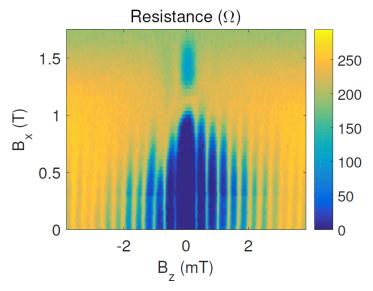
$$k_x = 0$$
 mode bound states $E_n = \Delta \cos\left(\frac{\phi}{2} \pm \frac{B_x}{v_F}W\right)$



Critical current and 1st order transition

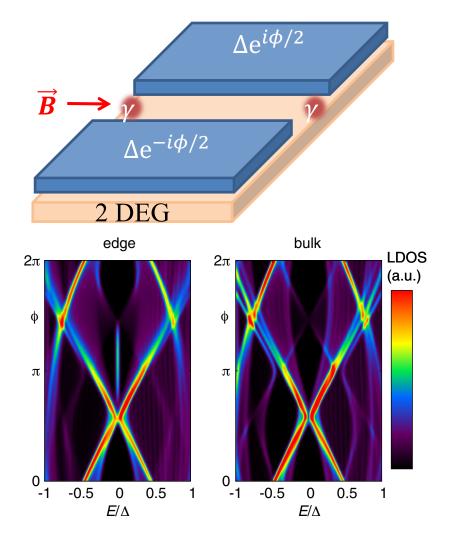






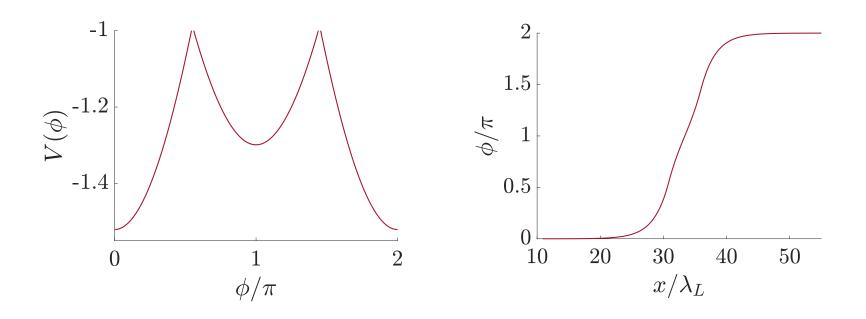
Hart et al. Nature Phys. (2017)

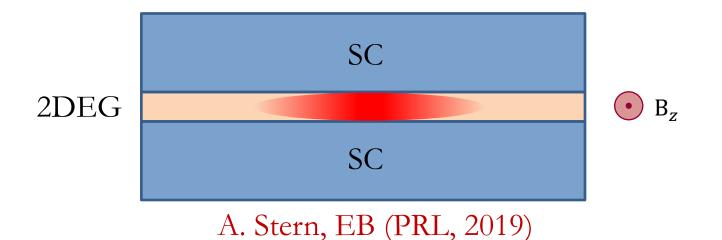
Majorana zero modes



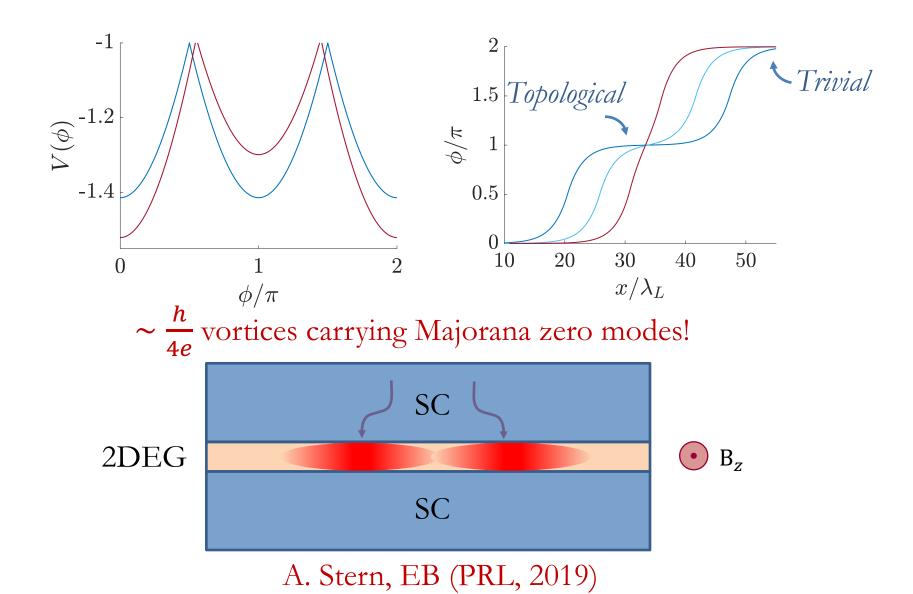
Zero bias peak at the edge and phase-dependent gap closings A. Fornieri et al. (Nature, 2019), H. Ren et al. (Nature, 2019)

Fractional Josephson vortices

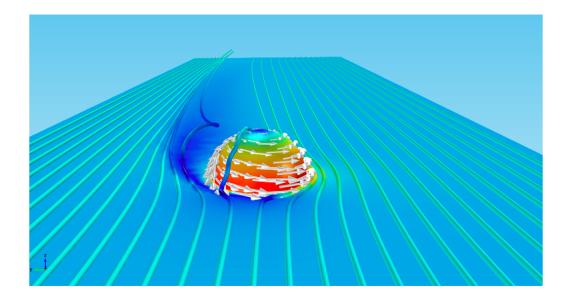




Fractional Josephson vortices

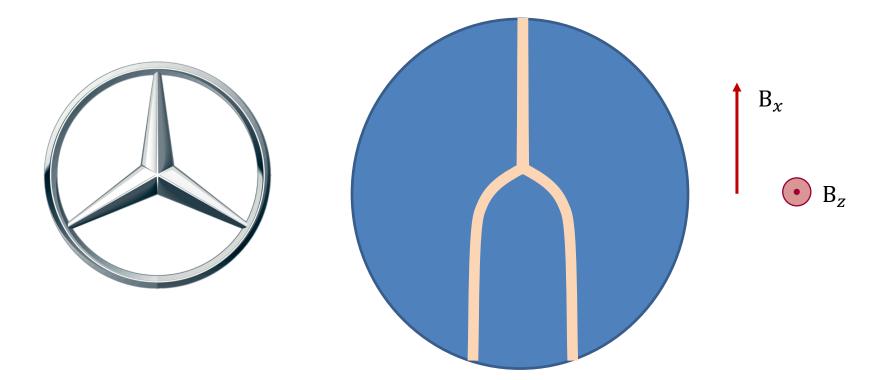


Controlling Majoranas by supercurrents?



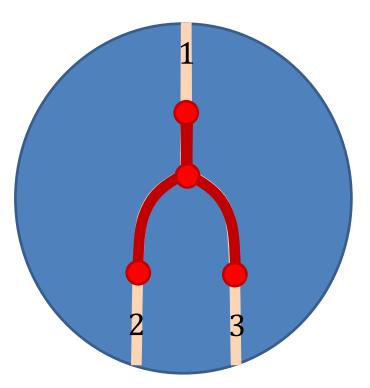
A. Stern, EB (PRL, 2019)

Tri-junction geometry



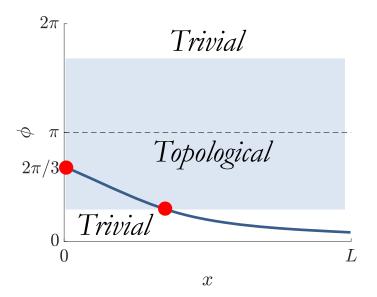
A. Stern, EB (PRL, 2019)

Tri-junction geometry



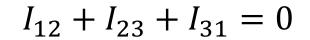
 $\phi_{i=1,2,3}(x)$: Gauge-invariant phases across junctions

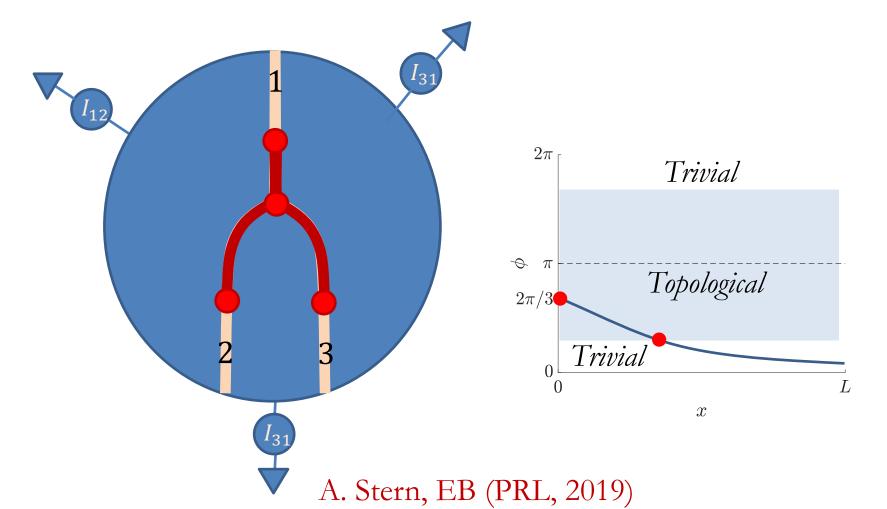
$$\phi_1 + \phi_2 + \phi_3 = 2\pi n$$



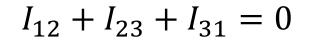
A. Stern, EB (PRL, 2019)

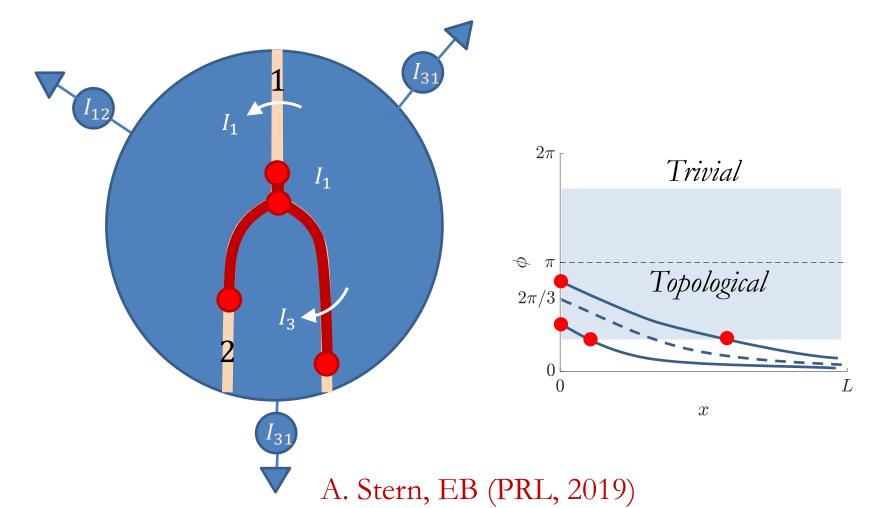
Manipulations by supercurrents





Manipulations by supercurrents

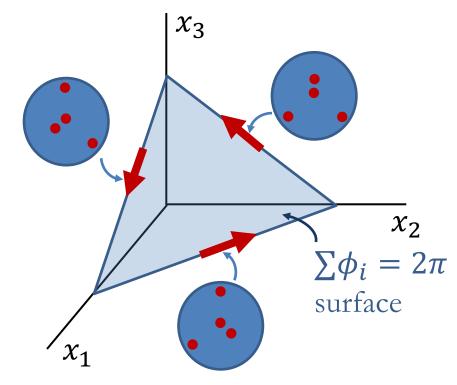




Control by supercurrents

 $x_{i=1,2,3}$: distance of *i*th Majorana from center

To braid, we need to encircle a line in a three-dimensional parameter space.



The red cycle implements braiding of Majoranas.*

*Assuming the coupling between each pair is monotonic in the separation. A. Stern, EB (PRL, 2019)

Beyond Majoranas

How can one get protected zero modes with richer non-Abelian properties?

Not in 1D systems – not even with interactions.

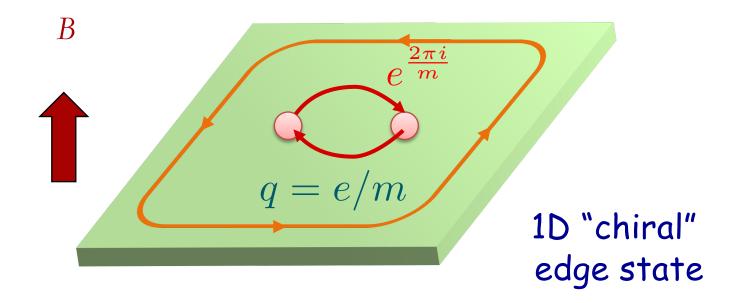
Non-Abelian Fractional quantum Hall states:
Moore-Read (
$$\nu = \frac{5}{2}$$
), Read-Rezayi,...

Alternatively: start from the edge states of Abelian FQH states to engineer new zero modes

Beyond Majoranas

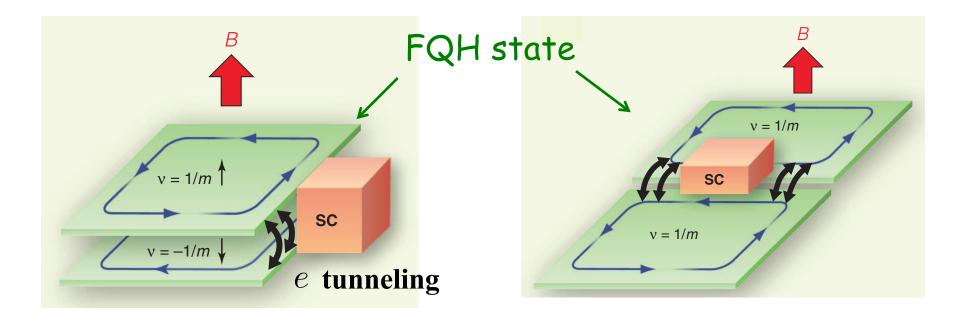
Consider the effectively 1D boundaries of 2D a topological phase which supports (abelian) anyons.

For example: v = 1/m Fractional Quantum Hall (Laughlin) state



Beyond Majorana zero modes

Setups for fractionalized Majorana zero modes:



Lindner, EB, Stern, Refael (PRX, 2012); Clarke, Alicea, Shtengel (Nature Comm., 2013); Cheng (PRB, 2013)

Fractionalized Majorana (parafermion) modes

Effective edge theory:

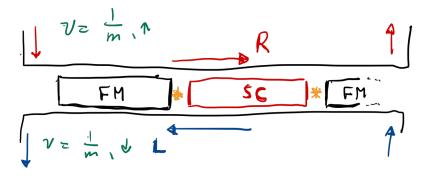
$$H = \frac{m}{2\pi} u \int dx \left[K (\nabla \phi)^{2} + \frac{1}{K} (\nabla \theta)^{2} \right]$$

$$- \int dx g_{s}(x) \cos(2m\phi) - \int dx g_{s} \cos(2m\theta)$$

$$\Psi_{R} \Psi_{L} + h.c. \qquad \Psi_{R}^{+} \Psi_{L} + h.c.$$

quasiparticle operator:
$$\chi_{R,L} \sim e^{i(\phi \pm \phi)}$$

Electron operator: $\Psi_{R,L} \sim e^{im(\phi \pm \phi)}$
Commutation relation: $[\phi(x), \phi(x')] = i \frac{\pi}{m} \phi(x'-x)$
charge density: $p = \frac{1}{\pi} z_x \phi$



Three distinct phases of the edge:

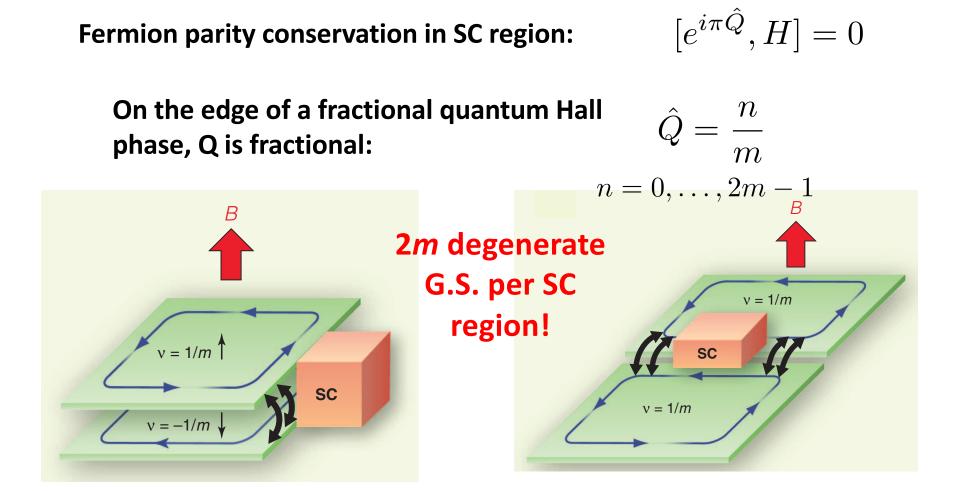
1. Gapless

2. Gapped, g_B dominated: $\langle e^{2i\theta} \rangle \neq 0$

3. Gapped, g_S dominated: $\langle e^{2i\phi} \rangle \neq 0$ Between 2 and 3, a new type of "fractionalized Marjoana" zero mode!

(At these points, a Laughlin q.p. can be injected at no energy cost)

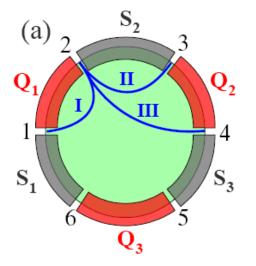
Ground state degeneracy



Lindner, EB, Stern, Refael (PRX, 2012); Clarke, Alicea, Shtengel (Nature Comm., 2013); Cheng (PRB, 2013)

Braiding

Braiding domain walls 3 and 4:



$$U_{34} = \exp\left(i\frac{\pi m}{2}\hat{Q}_{2}^{2}\right) = \exp\left(i\frac{\pi}{2m}q_{2}^{2}\right)$$
$$Q_{2} = \frac{1}{m}q_{2}, \quad q_{2} = 0, \dots, 2m-1$$

Example: m=3 $q_2 = 2p + 3q$ (p = 0, 1, 2, q = 0, 1)

$$U_{34} = \exp\left(i\frac{\pi}{6}q_2^2\right) = \exp\left(-i\frac{\pi}{2}q^2\right)\exp\left(i\frac{2\pi}{3}p^2\right)$$

(Majorana) \otimes (Something new!)