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The Plan

- Topological phases through examples : Discuss three explicit examples of
topological phases in microscopic lattice systems.

- These examples will build on some of the issues that we have
discussed in the past one week

- Will try to connect lattice physics with continuum field theory.

- generally difficult to do systematically

- In the process stumble upon interesting ideas and issues such as explicit
example of a connection between SPT and SET through the concept of gauging

of symmetry

- A Chiral spin liquid as a “gauged” Bosonic Integer quantum Hall effect.



Outline

- Introduction

- Three stories :

- 1. Free fermion Z2 SPT in a three dimensional amorphous solid
- Characterisation through electromagnetic response.

- 2.1 : Interacting U(1) Bosonic SPT in 2 dimensions : Bosonic Integer quantum
Hall effect on a lattice

- 2.2. A chiral Spin liquid on a Kagome Lattice
-+ The connection between the two through the “gauging” of U(1).

- Summary



Quantum entanglement based classification
of gapped phases in absence of symmetries

[Chen, Gu, Liu, Wen, PRB (2013)] g4
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e.g., gapped Quantum spin liquids

(Toric code ....)

LRE :
“Intrinsic topological order”
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Topological degeneracies




Symmetry enriched and symmetry
protected topological order

[Chen, Gu, Liu, Wen, PRB (2013)]

In presence of symmetries SRE can be of
B different types (even without symmetry
breaking).

The distinction of these phases are
B based on topological invariants which are

“protected” by symmetry =» Symmetry

protected topological phases (SPT)

LRE can be further classified according

B to various patterns of fractionalisation
of the symmetries =* Symmetry
enriched topological phases

e.g., SPTs (R. Verresen’s talk; J.
Cano’s talk)
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e.g., FQHE States (D. T. Son’s talk;
S. Simon’s talk)




Free fermion SPTs

Usual symmetries: UPU™L ~ )

Transposing symmetries: UPU™L ~ )T
Linear symmetries: UIU™L ~ i Rntilinear(TA
Antilinear symmetries: UIU™L ~ —i ORDINARY NON-ORDINARY

Usual antilinear: Time Reversal (7))
Transposing linear: Charge Conjugation (C)

Based on three symmetries — "time reversal, charge conjugation and sublattice" Transposing antilinear: Sublattice (5)
and spatial dimension

Class (T,C,S) d:O d=1 d=2 d=3 d=4 d:5 d=6 d=7 Add crystalllne Symmetries
A (0,0,0) Z | 0 | Z | 0| zZ ]| o] z o s
Alll (0,0.1) 0 z 0 z 0 z 0 z information about atomic orbitals
Al (+1.0.0) z 0 0 0 22 0 % 2 = Large number of Crystalline free
BDI | (+1,+1,1) Z> / 0 0 0 2/ 0 /> fermion SPTs
D | (041,0) | Z | Z | Z | 0 | 0 | 0 | 2Z | ©
DIl | (-1,+L,1) | 0 | Z 0 | 0 | 0 | 2Z
All | (-100) | 22 | 0 (& | 4 |)Z 0 0 0 [J. Cano’s talk]
Cl | (-1-1,1) | 0 | 2Z |== =7 2 | Z | 0 | O
C 0-10) | 0 | 0 | 2Z | 0 | Z | z | Z | ©
| (+#1,1,1) | 0 | 0 | 0 [2Z | 0 | Z | 2z | 2

Kitaev(2009); Ryu, Ludwig, Furusaki, Schnyder(2008); Moore, Ryu, Ludwig(2012)



Free fermion SPTs

Class | (T.C.S) [ d=0 | d=1 | d=2 | d=3 | d=4 [ d=5 | d=6 | d=7
A | (000) | Z | 0 | Z |0 | Z |0 Z o0
AT | (001) | 0 | Z |0 | Z |0 | Z | 0| Z
Al | (41,000 | Z | 0 | 0 [ 0 |22 0 | » | &
BDI | (+1411) | % | Z | 0 | 0 | 0 |22 | 0 | %
D | (0410) | & | & | Z | 0 [ 0 | 0 |22 ] 0
DIl | (1+11) | 0 | % 0 | 0 | 0 | 2Z
Al | (100) |22 0 (2 | 2 YZ | 0 [ 0 | o
Cl | (1-1,1) | 0 | 2Z |==° ~" 2% | Z | 0 | 0
C [ (010 | 0 | 0 [ 221 0 | Z | & | Z | 0
Cl (-I—l,—].,].) 0 0 0 27 0 Z> /> /

e For this table : presence of crystalline symmetries are NOT
essential but are often very useful to calculate the topological

Invariants

* Jranslation and inversion symmetries to calculate the Z2

invariant for 3d topological band insulator.

How to characterise the free fermion SPTs in absence of lattice symmetries ?



Free fermion SPTs in Amorphous/glassy solids

How to characterise the free fermion
SPTs in absence of lattice symmetries ?

[PRL 118, 236402 (2017)] Adhip Agarwala & Vijay Shenoy, lISc

Provided a recipe to engineer several free fermion SPTs explicitly in two dimensional
amorphous solids

How to characterise them ?

In particular, How to characterise a 3D amorphous 22 Tl ?

Electromagnetic response : Witten Effect



0

Witten Effect in topological insulators Ly = PE - B 0 e (O, 27T)
T
[Witten, 1979; Qi et. al., 2009; Essin et. al. 2009]
Under TR : 0 — —6 =0 =nn
v 0 0
Ly=-—E B = Vo-B = -—5¢V-B
0 A2 42 ¢ 472 ¢
6
,CQ — — M
V- -B=4mm 27T
| | | | 0
Unit magnetic monopole carries electric charge of 2—
e

Trivial/topological Insulator : 0 =20 / v

Can this be measured ?

Can ask the same question for crystalline case, but in that case, other ways to
calculate the bulk invariant. [Rosenberg et. al, 2010]



Hoping model of 3
dimensional Amorphous solid

Sy Every site : Two pairs of Kramer’s doublet
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Trivial Atomic insulator when the sites are decoupled
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slight hopping

INCrease more

expectation: two bands of localized states
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Outline

- Introduction

- 142 stories :

- 1. Free fermion Z2 SPT in a three dimensional amorphous solid
- Characterisation through electromagnetic response.

- 2.1 : Interacting U(1) Bosonic SPT in 2 dimensions : Bosonic Integer quantum
Hall effect on a lattice

- 2.2. A chiral Spin liquid on a Kagome Lattice

-+ The connection between the two through the “gauging” of U(1).

- Summary



Integer quantum Hall effect of bosons

[Senthil & Levin, PRL 2013; Lu and Vishwanath, PRB 2012]

System of interacting bosons where the total boson number is conserved, U(1)

But NO time reversal symmetry



Fate of such a system

Topological order (in a moment)
superfluid (breaks U(1) symmetry)

Mott insulators: Classification suggests that there can be at least
a countably infinite number of Mott Insulators distinct from each
other characterised by

1 = O,::l, 2,::3,'”

e Equal number of counter propagating chiral edge modes
protected by U(1)

charge

thermal
Y o O

= 2n; O

o

* Unique gapped ground states on a 2-tori



Lattice Model...1

Hard-core bosons on honeycomb lattice
at half filling.

Correlated hopping in presence of a
background flux preserving sub-lattice
flavour.

Last term NN hopping

Background flux: Broken time reversal

B S [ et - Dalas + e
((i5))
1A a T
A=0:— U(1) x U(1) + Z [6 “(2n7 — 1)b; by + h.c.]
(kL))
+0:— U(1)

+ A Z(em’“ﬂ' a};bj + h.c.)

(kj)
Other models : Regnault et. al., 2015 [SB et. al., 2015]



Lattice Model...2: The background flux

Gauge & 71\2/ T

ChOice ‘\\U/;*Z»

r—af3 4-site unit cell [SB et. al., 2015]



Numerical studies: Infinite DMRG on cylinders

Geometry | b d

a C

Geometry Il
d

e Two geometries (no dependence of results)

¢ 4 site/unit cell.

e # of sites in y direction= 8, 12,16

e open boundary along x direction. B et. al., 2015}



Numerical results

a # 0 Unique ground state with a gapped
excitation spectrum

l l | | |
0.50 0.25 0 -0.25 -0.50

o/

e Quantized Hall response

e degeneracy of edge modes
from entanglement spectra. [SB et. al., 2015}



Numerical results...(1) : quantized (charge) Hall response

O<a<m 2 [SB et. al., 2015]
BIQH T, 0, = 2 A=0.a=-m/3
A=07a=m/2
@' ______ [‘A )27-‘- 1
¢ -~ v~ flux Quantization is robust
;5 for fairly large
SO o oo \
—rT<a<0 i Oy = 2
BIQH I, 0,y = —2 -1
N S R
i g 202 04 06 08
®, /27

Adiabatic insertion of 2 flux through the hole transfers oxy charges from one end to another
[Laughlin, 1981]



Lattice Model...3: Correlated hoping

e'Aii (2nb — 1)a;-raj

Amplitude of the hopping is opposite depending on
presence/absence of b boson in the intermediate site

’L[Aw —|—7TTLZ] T

= —¢ a; a;

The bosons of one flavour changes the flux seen by the other flavour

BIQH as a result of mutual flux binding ?

[Senthil & Levin, PRL 2013; Lu and Vishwanath, PRB 2012]



Particles in 2D as source of flux

Particle number

, 8MJ-“ — () 1= 1,2
conservation

1

EMVA .
: Ko
Particles as source of flux = Jz T I 81/0/5\




Mutual Flux binding

Bind one quantum of flux of b with a particle of type a and vice versa

(particle of type 1 sees particle of type 2 as source of 2z flux)

¢a(:13) = /d2:13’@(33 — 2 )a' (2)a(x)

~

a(x) = ei(bb(‘”)a(x) b(x) = ew“(w)b(a:')

At low energy, it is possible that b; become the effective quasi particles
a(x) and a(z) — Uu(l) Ac=A4Aa+ 4

b(z) and b(x) — Uy(l) A= A“;Ab




Low energy theory for the composite bosons
and BIQH [Senthil & Levin, PRL 2013]

£:£a+£b+£int+£05

1
La, =ia” |:ao — 1 (5148 -+ ./40) -+ ZO&():| a

1 1 - S
— —|Va+i| A+ A)a+ida
2m 9 |
1 Actlpn for
Eb :ig* {80 — <§A8 _ A()) 4 Zﬂo} l; composite bosons
1 I (1 Ac T\ 71 ey
_—Vb—|_@ —A°— A b—|—2ab :
2m )

1

__ _prA Mutual Chern-Simons term
Les 47TE w0y Px + Budvar], == (Flux attachment)



Low energy theory for the composite bosons
and BIQH

[Senthil & Levin, PRL 2013]

BIQH =» Condense composite bosons

1
,Ca —1a” [(90 — 1 (5148 + Ao) + ioz()] a

1

2m

. 1 .
Lb:4w<F%-i(§Ag—-A@>-+u%]b

2

1.
V&+i<§AC+A>&+i52&

1 2

s (L A)ii

2m

Y

Locking of gauge fields
(Anderson-Higgs Mechanism)

a=A"+ A
B=A°—A



Low energy theory for BIQH

BIQH - Condense composite bosons

2 2
»CSPT = —EEW,\AZ&,A(;{ | 47T€“V>‘AM8VA)\
Opy = 12,  0py = —2
Edge :

charge mode
g non-chiral

s mode



Numerical results...(1) : Degeneracy of edge modes
[Furukawa et. al., 2013]

1

Expectation from edge theory L= —E(Kaﬁatqbaaxqb@ + Vap0:0a0:93) K = [ (1) (1) ]
Introduce charge and pseudo spin modes Pe(s) = (Pa T dp)/ V2
Hamiltonian Momentum
27TV 2T
H=""(LS+ L), P=>""(L5—L)

L,

o) (AN, £AN,)? & o(s)
Ly = 1 Z mn,,

AN,y — deviation of boson number from GS

m=1,2,3--- nfr(f) — oscillator occupation no.



Numerical results...(2) : Degeneracy of edge modes
AN, + AN, =0

2

9 — —
N — — 7
8 B h N — //
7| 3 _ 2 .
:3 | R L, =4

6L -, * mixed mode ! .
o AN N ,// /
/< N o \\\ t /// e a4

- N . /
£50 :
— ~ T /
| 4F N 7 charge
. AN - e
3l pseudospin = ~*** 7 mode
mode S L7
2 N e / GS
A g — 1st
1+ —2nd .
3rd Bosonic Integer
= ' | | | | | Quantum Hall phase
-1.5 -1 -0.5 0 0.5 1 1.5
ky/m
TABLE I: The energy levels of entanglement Hamiltonian (edge mode): AN, + AN, = 0.

Levels mode k, Lg, L3 AN,, AN, {ns.} {n;.} Degeneracy

Ground state - 0 Li=Lg=0 AN, = AN, =0 ne, =0 ne. =1 1

charge 2w/Ly, Li=1,Li=0 AN,=ANy,=0 } mn;=1 ns, =0 1

L§+Li=1 i SlE, By e = g =0 5
6+ Lo = spin —27 = (), =

1st excited state







Outline

- Introduction

- Three stories :

- 1. Free fermion Z2 SPT in a three dimensional amorphous solid
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Quantum spin liquids and Kagome
antiferromagnets

S=1/2

H=J)» Si-Sj+--
(27)
- Rich and intriguing possibilities
» quantum spin liquids ?

- Several candidate materials



XXZ antiferromagnets on Kagome
and Chiral spin liquids

H = Jz ZS?S; + )\Hpe’rt
(17)

J,,A>0 and J,> A

Classical problem has macroscopically degenerate ground state

Quantum fluctuation can lead to long range entangled state

[C. Laumann’s talk]



Model : XXZ antiferromagnet with 3-spin interaction

[Bauer et. al., Nat. comm. 2014; Schroeter et. al. PRL, 2007]

> > — — —
Chlral J E S Sq _|_ A E Srr' * (Sp X Sq)
p,q,TEN/, A
[He, SB, Pollmann, Moessner, PRL, 2015]

Other models :

[He, Sheng & Chen, PRL, 2014; Gong et. al. Sci. Rep. 2014]



Chiral spin liquid

[Kalmeyer & Laughlin, PRL 1987]

Laughlin’s state of Holstein Primakoff /Schwinger bosons

Semionic o O

Fractional quasiparticle (spinon) © 1/2 spin statistics - |

Degeneracy on a torus = 2

[Wen, Int. J. Mod. Phys. B, 1990]

Spontaneous time-reversal symmetry breaking

Scalar chirality order \/Tg\kf S; - (57 X gk)

[Wen, Wilczek & Zee, PRB 1989]



Easy axis limit : U(1) lattice gauge theory with
dynamical bosonic spinons

H = Jz ZS,LZSJZ + >\Hpe7°t
(i5)

J,,A>0 and J,> A\

extensive classical degeneracy

$/$\$ é/¢\$ degeneracy litted by Hpert

Y S =+1/2

PEAN,Y




Easy axis limit : U(1) lattice gauge theory with
dynamical bosonic spinons

[Nikolic, Senthil, PRB, 2005]
< . _|
M M 2. 5 =R
pEAN,Y

Hard-core boson representation on medial honeycomb lattice

Z S;:ajai—%,

peEN;

1
z _ T
> Sy =bibe — 5

PEVk




Bosonic Spinons

E.. = —F, = (S; -+ 1/2)



emergent gauge field : Closed loop spin flips




Easy axis limit : U(1) lattice gauge
theory with dynamical bosonic spinons

Recast the spin model in terms of bosonic spinons and the U(1) gauge field

Charge quantum numbers of the spinons

Type S, A
(U(1) global charge) | (U(1) gauge charge)

a; 1/2 1

b, 1/2 1




Effective Low energy Hamiltonian

Hchiral = J; ZSZS(; + A Z g"” ' (gp X §C1)

(ra) P,q;rEV,A
L 1
P {Sp - (S X T)} P = Z(an — 1) { (A +m/2) G [0 + h.c.} + cyclic perm.

Correlated Hopping of bosons

B second neighbour hopping of bosons.

B hopping amplitude changes sign depending on
the occupancy of intermediate site

B Dynamic gauge field



Effective Low energy Hamiltonian

Hchiral = J; ZSZS(; + A Z g"” ' (gp X §C1)

(pq) p,q,TEV,A

HLGT — ) Z [ iAi T /2 (9pb 1)aTa3 s c}/
({i7))

_I_)\ Z [ T Ay +imw /2 2n . 1)bTbl _l_hc]
(kl>>

Zcos [V x Al

Z heX \




Gauge mean field theory

[Wilson, PRD, 1974; Savary & Balents, PRL, 2012]

Energy minimisation

Hefirat = X Z AT 2nfy — Vala; + he. for the gauge field
1A Z [ iAuitin/2 (g 16l by + h. C] m — flux through the hexagons
<<k1>> /
Zcos [V x A
Z hex

10 S
AY — static background
VxA =

A° — fluctuations
Dropping dynamics of the gauge field



G-MFT : U(1) SPT
(Integer quantum hall effect of bosons)

FJGMET _ Z [ 1AL i /2 an _ 1)0,1-0/]’ + h.c.}

chlral

((i))

4\ Z { iAD i /2 27?, . l)bTbl —I—hc}

second neighbour hopping of bosons.

hopping amplitude changes sign depending on
the occupancy of intermediate site

STATIC BACKGROUND GAUGE FIELD




Restoring gauge fluctuations

40 S

- We now need to restore the gauge fluctuations

- This is done by adding a Maxwell term for A



Restoring gauge fluctuations

EZEa—l—ﬁb—l—Eim—l—ﬂcs—l—




Low energy theory
(after condensing the composite bosons)
1

] :
L= EEW/\ S A0V AS = 24,0,.A5

v (8,uA —0,A,)°.

-+ Bulk : photon is massive due to chern-simons term

2
Mphoton ™ €



- Edge : s-mode at the edge gapped out

Low energy theory
(after condensing the composite bosons)

1 VA 1 C C
L= | D450, 45 — 24,0, A5
1
4e?

(OuA, —0,A,)°.

¢ mode (S;)

>

removed ‘by “gauging”’

s - mode couples to gapped gauge field A

Integrate out A — generate mass for s — mode



Low energy theory
(after condensing the composite bosons)

1 1 c mode (S;)
T _pUA | T gc c Z
1
— —(0puA, —8,A,)°. A :
1e2 OrAy = O Au) removed by “gauging”
[He, SB, Pollmann, Moessner, PRL, 2015]
- Chiral c-mode (S;) @ ool A . THe & Chen, PRL, 2015}
o= =T T
—1/2 _ T T =
C = o, LT ST -
o — 1 2 & -05L - Y] g T =T
Y / S —// T , 3 ©
5 1
-1.0 ' 1 0 '




Low energy CS Theory

K
CZ%QMQJ
-
- Chiral
g =|a, 5, Al
- Degeneracy on Torus = 2
0 1 1
1 0 -1
1 -1 0
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Summary

Three examples of topological phases
3d Z2 free fermion topological insulator in an amorphous/glassy solid
Bosonic Integer Quantum Hall phase
Chiral spin liquid

Chiral spin liquid as gauged BIQH phase

Thank You



