Topological Materials

Claudia Felser

the revolution

- Non-trivial Phenomena captured by Single-Particle Picture
 → predictive design of novel materials and functionalities
- Novel Transport Phenomena determined by Global Properties
 - quantized transport from topological protection
 - giant responses

- Vision:
 - Quantum effects at room temperature, spintronics
 - Catalysis, energy conversion

How does a materials scientist find topological materials?

outline

- Introduction
- Topological insulators
- Weyl semimetals broken symmetry
- Magnetic Weyl semimetals
- New Fermions
- Outlook axion insultors and beyond

outline

- Introduction
- Topological insulators
- Weyl semimetals broken symmetry
- Magnetic Weyl semimetals
- New Fermions
- Outlook axion insultors and beyond

the predictions

https://doi.org/10.1038/s41586-019-0954-4

A complete catalogue of high-quality topological materials

M. G. Vergniory^{1,2,3,11}, L. Elcoro^{4,11}, Claudia Felser⁵, Nicolas Regnault⁶, B. Andrei Bernevig^{7,8,9}* & Zhijun Wang^{7,10}*

https://doi.org/10.1038/s41586-019-0937-5

ARTICLE

doi:10.1038/nature23268

Topological quantum chemistry

Barry Bradlyn^{1*}, L. Elcoro^{2*}, Jennifer Cano^{1*}, M. G. Vergniory^{3,4,5*}, Zhijun Wang^{6*}, C. Felser⁷, M. I. Aroyo² & B. Andrei Bernevig^{3,6,8,9}

Comprehensive search for topological materials using symmetry indicators

Feng Tang^{1,2}, Hoi Chun Po^{3,4}, Ashvin Vishwanath³ & Xiangang Wan^{1,2*}

https://doi.org/10.1038/s41586-019-0944-6

Catalogue of topological electronic materials

Tiantian Zhang^{1,2,9}, Yi Jiang^{1,2,9}, Zhida Song^{1,2,9}, He Huang³, Yuqing He^{2,3}, Zhong Fang^{1,4}, Hongming Weng^{1,5,6,7,8} & Chen Fang^{1,4,6,7,8}

© Nature

http://topologicalquantumchemistry.org/

Compound Contains	Exclude		ICSD Number			
e.g. Bi1 Se2 Ge		eg. 01 N	- or -	eg. 123456	Search	

Н																	He
Li	Ве											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Р	s	CI	Aı
К	Ca	Sc	Ті	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rr
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	0
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

the concept

Liu et al. Nat. Mat. (2016)

the materials

• explorative search for new materials & predictive design

• high quality single crystal growth

• epitaxial growth of ultrathin films and heterostructures

• 2D materials and micro/nano structures

the materials

the measurements

family of quantum Hall effects

1985

Klaus von Klitzing

1998

Horst Ludwig Störmer and Daniel Tsui 2010

Andre Geim and Konstantin Novoselov

S Oh Science 340 (2013) 153

2016

David Thouless, Duncan Haldane und Michael Kosterlitz

topology in the electronic structure

topology in the electronic structure

Magic electron numbers

Hückel:								
4n+2	aromatic							
4n antiaromatic								

Möbius: aromatic 4n+2 antiaromatic

4n

ORGANIC CHEMISTRY Aromatics with a twist

Rainer Herges

The properties of flat aromatic molecules are well known to chemists, but some non-planar aromatics remain a mystery. A molecule that can twist into a Möbius band on command might shed light on their features.

Figure 2 | A molecular topological switch. Latos-Grażyński and colleagues¹ have made a compound that is antiaromatic in nonpolar solvents, but not in polar solvents. a. In nonpolar solvents, the two benzene rings (purple) in the molecule are parallel, and the molecule is a two-sided, non-twisted band. **b**, In polar solvents, the upper benzene ring twists by 90°, so that the molecule becomes a one-sided, Möbius structure. This conformational change alters the aromaticity of the molecule.

topology in the electronic structure

IP Nanographenes Very Important Paper

International Edition: DOI: 10.1002/anie.201808178 German Edition: DOI: 10.1002/ange.201808178

Undecabenzo[7]superhelicene: A Helical Nanographene Ribbon as a Circularly Polarized Luminescence Emitter

Carlos M. Cruz, Silvia Castro-Fernández, Ermelinda Maçôas, Juan M. Cuerva, and Araceli G. Campaña*

Figure 1. Background and novel structural features of compound 1.

igure 3. a) Experimental ECD (left) and CPL (right, $\lambda_{exc} = 490$ nm) of M) (red and scarlet) and (P) (gray and black) enantiomers of 1 in CH₂Cl₂ at ca. 5×10^{-6} M. b) Experimental UV/Vis (blue) and fluoresence (navy, $\lambda_{exc} = 490$ nm) spectra of 1 in CH₂Cl₂ at ca. 5×10^{-6} M.

outline

- Introduction
- Topological insulators
- Weyl semimetals broken symmetry
- Magnetic Weyl semimetals
- New Fermions
- Outlook axion insultors and beyond

topological insulators – quantum spin Hall

Z₂ Topological Order and the Quantum Spin Hall Effect

C.L. Kane and E.J. Mele

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA (Received 22 June 2005; published 28 September 2005)

The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z_2 topological invariant, which distinguishes it from an ordinary insulator. The Z_2 classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the Z_2 order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multiband and interacting systems.

First prediction in graphene by Kane

Heavy insulating elements?

Strained α -Sn and Bi-bilayer

topological insulators – quantum spin Hall

-1.0

-0.5

0.0

0.5

1.0

Bernevig, et al., Science 314, 1757 (2006) Bernevig, S.C. Zhang, PRL 96, 106802 (2006) König, et al. Science 318, 766 (2007)

topological insulators – quantum spin Hall

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells B. Andrei Bernevig, *et al. Science* **314**, 1757 (2006); DOI: 10.1126/science.1133734

Kane and Mele, PRL 95, 146802 (2005) Bernevig, et al., Science 314, 1757 (2006) Bernevig, S.C. Zhang, PRL 96, 106802 (2006) König, et al. Science 318, 766 (2007)

Inert pair effect

topological insulators

Starting with Bismuth Bi-Sb Legierungen Bi2Se3 und verwandte Strukturen

Moore and Balents, PRB 75, 121306(R) (2007) Fu and Kane, PRB 76, 045302 (2007) Murakami, New J. Phys. 9, 356 (2007) Hsieh, et al., Science 323, 919 (2009) Xia, et al., Nature Phys. 5, 398 (2009); Zhang, et al., Nature Phys. 5, 438 (2009)

topological insulators

chemistry

Table I. Proposed topological insulator materials grouped into several different material classes. ^{4,12,13,19,23-29}											
HgTe-type	Bi₂Se₃-type	Honey Comb Lattice	Bismuth- Alloys	NaCl Structure	Oxides	Correlated Materials	Super- conductors				
HgTe	Bi₂Se₃, Bi₂Te₃, and Sb₂Te3	Graphene	Bi-Sb	SnTe PbTe	Doped BaBiO ₃	Iridates	$Cu_xBi_2Se_3$				
Half-Heuslers such as LaPtBi	Bi ₂ Te ₂ Se	LiAuTe		PuTe AmN	Iridates	SmB ₆	LaPtBi YPtBi LuPtBi				
α -Sn, HgSe β -HgS	$(Bi_xSb_{1-x})_2Te_3$					YbPtBi	TIBiSe ₂ TIBiTe ₂				
Chalco-pyrites	$TIBiSe_2$ and $TIBiTe_2$					Skutterudites					
AlSb/InAs/GaSb	$Bi_{14}Rh_3I_9$					PuTe, AmN					

Claudia Felser and Xiao-Liang Qi , Guest Editors, MRS Bull. 39 (2014) 843.

TI⁺¹ Sn²⁺ Bi⁺³

inert pair effect

predicting topological insulators

Bernevig et al., Science 314, 1757 (2006), König et al., Science 318 (2007) 766.

1, 2, 3, ...

Graf, Felser, Parkin, IEEE TRANSACTIONS ON MAGNETICS 47 (2011) 367 Graf, Felser, Parkin, Progress in Solid State Chemistry Chemistry 39 (2011) 1

predicting topological insulators

Chadov, et al., Nature Mat. 9 (2010) 541 Lin et al., Nature Mat. 9 (2010) 546

unconventional superconductors

distorted structure to property

distorted structure to property

Müchler, Zhang, Chadov, Yan, Kübler, Zhang, Felser, Angewandte Chemie 2012

distorted structure to property

honeycomb from sp3 to sp2

(a)

CdTe

Energy (eV)

KZnP

Band inversion is found in the heavier compounds No surface state? Why? Interaction between the two layers in the unit cell and two Dirac Cones

Zhang, Chadov, Müchler, Yan, Qi, Kübler, Zhang, Felser, Phys. Rev. Lett. 106 (2011) 156402 arXiv:1010.2195v1

honeycomb from sp3 to sp2

Yan, Müchler, Felser, Phys. Rev. Lett. 109 (2012) 116406

Weyl semimetals

Breaking inversion symmetry

Dirac semimetals

ARTICLE

Received 2 Dec 2013 | Accepted 2 Apr 2014 | Published 7 May 2014 DOI: 10.1038/ncomms478

Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd₃As₂

Madhab Neupane^{1,*}, Su-Yang Xu^{1,*}, Raman Sankar^{2,*}, Nasser Alidoust¹, Guang Bian¹, Chang Liu¹, Ilya Belopolski¹, Tay-Rong Chang³, Horng-Tay Jeng^{3,4}, Hsin Lin⁵, Arun Bansil⁶, Fangcheng Chou² & M. Zahid Hasan^{1,7}

Observation of Fermi arc surface states in a topological metal Su-Yang Xu *et al.* Science **347**, 294 (2015); DOI: 10.1126/science.1256742

Weyl semimetals

Binghai Yan and Claudia Felser, Annual Review in Condensed Matter 8 (2017) 337

Weyl semimetals

Breaking symmetry

Inversion symmetry (Structural distortion)

- Breaking time reversal symmetry
 - Magnetic field

Dirac points are at high symmetry points **Weyl** points are not at high symmetry points

the materials

RPtBi, RPdBi, RPtSb Bi₂Se₃, Bi₂Te₃, Sb₂Te₃ Bi₂Te₂Se, Sb₂Te₂Se TIBiTe₂ TIBiSe₂, TIBiSSe₂

 Cd_3As_2 , Na_3Bi , ZrSiS, HfSiSLaBi, LaSb, $PtSe_2$, $PtTe_2$ MA_3 (M=V, Nb, Ta; A=Al, Ga, In), CuMnAs, $HfTe_5$

NbP,TaP,NbAs,TaAs,WTe₂, Td-MoTe₂ Co₂TiX (X=Si, Ge, Sn) Mn₃Ge, Mn₃Sn, Mn₃Ir, Mn₃Ga, RPtBi₂ WP₂, MoP₂

MoP, PdSb₂, La₄Bi₃, Mg₃Ru₂, Ta₃Sb, Nb₃Bi, CoSi, RhSi, AlPt, PdGa

high quality materials

- large mean free path, high mobility
- large magneto resistance, quantum oscillations
- Iow defect density
- high conductivity

Hydrodynamic flow of electrons

300 um

Weyl semimetals

3D topological Weyl in transport measurement:

- 1. Fermi arc
- 2. Intrinsic anomalous Hall effect
- 3. Planar Hall effect
- 4. Chiral anomaly
- 5. Axial gravitational anomaly

AA Burkov, L Balents, PRL 107 12720 (2012) AA Burkov, arXiv:1704.05467v2 AA Burkov, J. Phys.: Condens. Matter 27 (2015) 113201

M

type I or II

A. K. Geim, A. H. MacDonald Physics Today, 08. (2007), 35-41

Shekhar Chandra, et al., Nature Physics 11 (2015) 645

Weyl semimetals in non-centro NbP

С

Sink (T1)

NbP, NbAs, TaP, TaAs

Source (T₂)

Transport agent
Precursor
Single crystals

• W2

d

w1

W2

W1

Shekhar, et al., Nature Physics 11 (2015) 645, Arnold, et al., Nature Communication 7 (2016) 11615

Weng, et al. Phys. Rev. X 5, 11029 (2015) Huang et al. preprint arXiv:1501.00755

Fermi arcs

Increasing spin orbit coupling increases – heavier elements Distance between the Weyl points increases

Liu et al., Nature Mat. 15 (2016) 27 Yang, et al. Nature Phys. 11 (2015) 728

chiral anomaly

- Chiral anomaly is the anomalous non-conservation of a chiral current.
- A sealed box with equal number of positive and negative charged particles, its found when it is opened to have more positive than negative particles, or vice-versa.
- Events are expected to be prohibited according to classical conservation laws, must be ways they can be broken, because the observable **universe contains more matter than antimatter**

Wikipedia

S. L. Adler, Phys. Rev. 177, 2426 (1969) J. S. Bell and R. Jackiw, Nuovo Cim. A60, 47 (1969) AA Zyuzin, AA Burkov - Physical Review B (2012)

chiral anomaly

20

0

-5

0

10

5 E (meV) 15

Ga-doping relocate the Fermi energy in NbP close to the W2 Weyl points Therefore we observe a negative MR as a signature of the chiral anomaly the, NMR survives up to room temperature

Niemann, et al. Scientific Reports 7 (2017) 43394 doi:10.1038/srep4339 preprint arXiv:1610.01413

axial-gravitational anomaly

Experimental signatures for the mixed axial-gravitational anomaly in Weyl semimetals

- In solid state physics, mixed axial-gravitational anomaly can be identified by a positive magneto-thermoelectric conductance (PMTG) for Δ T II B.
 - Low fields: quadratic

$$G_T = d_{\rm th} + c_2 a_\chi a_g B_{\parallel}^2$$

- High fields: deminishes
- $\Delta T \parallel B$ dictates sensitivity on alignement of B and ΔT .

gravitational anomaly

- Landsteiner K., et al. Gravitational anomaly and transport phenomena Phys. Rev. Lett. 107, 021601 (2011). URL
- Jensen, et al. Thermodynamics, gravitational anomalies and cones. Journal of High Energy Physics 2013, 88 (2013).
- Lucas, A., Davison, R. A. & Sachdev, S. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in weyl semimetals. PNAS 113, 9463–9468 (2016).

A positive longitudinal magneto-thermoelectric conductance (PMTC) in the Weyl semimetal NbP for collinear temperature gradients and magnetic fields that vanishes in the ultra quantum limit.

universe – in a crystal

The New Hork Cimes https://nyti.ms/2vCMCGi

SCIENCE

An Experiment in Zurich Brings Us Nearer to a Black Hole's Mysteries

By KENNETH CHANG JULY 19, 2017

particles and quasi particles

Mattuck, "A Guide to Feynman Diagrams in the Many-Body Problem" (1967)

GdPtBi – an ideal Weyl

B(T) C. Shekhar et al., PNAS 2018, arXiv:1604.01641, (2016), Kumar PRB 2018, Kaustuv Nat. Mat. Rev. (2019). M. Hirschberger et al., Nature Mat. Online arXiv:1602.07219, (2016).

Weyl semimetals

Breaking time reversal symmetry

Weyl semimetals

Berry curvature design

Berry curvature design

- giant spin Hall
- giant anomalous Hall
- giant topological Hall
- giant anomalous Nernst

Heusler, Weyl and Berry

December 2014

www.epljournal.org

Mn Ge

For the planar cases the AHC is connected with Weyl points in the energy- band structure.

Heusler, Weyl and Berry

The anomalous Hall conductivity in an antiferromagnetic metal is zero

Mn₃Ge

Mn₃Sn

doi:10.1038/nature15723

Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature

Nayak et al. arXiv:1511.03128, Science Advances 2 (2016) e1501870

Kiyohara, Nakatsuji, preprint: arXiv:1511.04619

Nakatsuji, Kiyohara, & Higo, Nature, doi:10.1038/nature15723

Fermiarcs and chiral anomaly in the Weyl AFM

Low High

LETTERS

Evidence for magnetic Weyl fermions in a correlated metal

K. Kuroda^{1†}, T. Tomita^{1,2†}, M.-T. Suzuki^{2,3}, C. Bareille¹, A. A. Nugroho^{1,4}, P. Goswami^{5,6}, M. Ochi⁷, M. Ikhlas^{1,2}, M. Nakavama¹, S. Akebi¹, R. Noguchi¹, R. Ishii¹, N. Inami⁸, K. Ono⁸, H. Kumigashira⁸, A. Varykhalov⁹, T. Muro¹⁰, T. Koretsune^{2,3}, R. Arita^{2,3}, S. Shin¹, Takeshi Kondo¹ and S. Nakatsuji^{1,2*}

Hao Yang, et al. New J. Phys. 19 (2017) 015008,

Nernst effect in Mn₃Sn

LETTERS

PUBLISHED ONLINE: 24 JULY 2017 | DOI: 10.1038/NPHYS41

Large anomalous Nernst effect at room temperature in a chiral antiferromagnet

Muhammad Ikhlas^{1†}, Takahiro Tomita^{1†}, Takashi Koretsune^{2,3}, Michi-To Suzuki² Daisuke Nishio-Hamane¹, Rvotaro Arita^{2,4}, Yoshichika Otani^{1,2,4} and Satoru Nakatsuii^{1,4}*

Magnetization dependence of the spontaneous Nernst effect for ferromagnetic metals and Mn₃Sn

Kagome lattice

LETTER

doi:10.1038/nature25987

Massive Dirac fermions in a ferromagnetic kagome metal

Mn,Fe,Co

Nature, 2018, doi:10.1038/nature25987

Kang et al., preprint arXiv:1906.02167

Kagome lattice

0 Oe

50 un

Looking for Weyl fermions on a ferromagnetic Kagomé lattice with out of plane magnetisation.

Enke Liu, et al. Nature Physics 14 (2018) 1125, preprint arXiv:1712.06722

Nature, 2018, doi:10.1038/nature25987

LETTER

Liu, et al. Nature Physics 14 (2018) 1125 , preprint arXiv:1712.06722

D. F. Liu, et al., Science (2019) under review

STM and ARPES confirms Weyl and Fermiarcs

Morali et al., Science accepted , preprint arXiv:1903.00509

ARPES confirms Weyl and Fermiarcs

new transport properties

Giant Hall Angle 20%

Berry curvature design

- giant anomalous Hall
- giant anomalous Nernst •

Liu, et al. Nature Physics 14 (2018) 1125, Guin, et al. Adv. Mater. 2019, 1806622, arXiv:1712.06722, arXiv:1807.07843, arXiv:1806.06753

 $Co_3Sn_2S_2$

Mn₃Sn

new transport properties

Co₂MnGa

Berry curvature design

- giant anomalous Hall
- Co₃Sn₂S₂ giant anomalous Nernst Mn₃Sn

Guin, et al. Adv. Mater. 2019, 1806622, arXiv:1712.06722, arXiv:1807.07843, arXiv:1806.06753

new transport properties

Guin, et al. Adv. Mater. 2019, 1806622, arXiv:1712.06722, arXiv:1807.07843, arXiv:1806.06753

quantum devices

- Towards QAHE in MBE grown thin films.
- The anomalous Hall resistance is more than 0.75 h/e², comparable to the QAHE sample in previous reports.

quantum devices

- Towards QAHE in MBE grown thin films.
- Magnetic Weyl for QAH effect in 2D

Qiunan Xu, Enke Liu, Wujun Shi, Lukas Muechler, Claudia Felser, Yan Sun, preprint arXiv:1712.08915

the Heusler Family

Graf, Felser, Parkin, IEEE TRANSACTIONS ON MAGNETICS 47 (2011) 367 Graf, Felser, Parkin, Progress in Solid State Chemistry Chemistry 39 (2011) 1

Heusler from the Lego® Box Н He Li Be N B C \bigcirc Ne F Na Mg S CI Ar A Si Ρ K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Rb Sr Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn Cs Ba Fr Ra La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Heusler, Weyl and Berry

the tuning parameter

- topology is more than Σ symmetries
- insulators, semiconductors, metals, topological insulators, Weyl and Dirac, spin gapless semiconductors
- spin ferro, ferri, antiferro, compensated ferri, non collinear
- spin in plane, out of plane
- doping and substitution to adjust the chemical potential, rigid band model
- from isotropic to anisotropic: cubic, tetragonal and hexagonal distortion
- phase transitions

Heusler, Weyl and Berry

Manna et al., Nature Materials Review, 2018, Nayak, Nature 2017, Nayak, Science Advances 2017

From semiconductors to half metals

Tuning exchange

Galanakis et al., PRB 66, 012406 (2002)

Balke et al. Solid State Com. 150 (2010) 529 Kübler et al., Phys. Rev. B 76 (2007) 024414
Heusler and Weyl

Breaking symmetry

Inversion symmetry (Strain)

Breaking time reversal symmetry

. Magnetic field

Co₂TiSn

$$Co_2 TiSi: 2 \times 9 + 4 + 4 = 26$$
 Ms = $2\mu_B$

- · Dirac points at high symmetry
- · Weyl points at low symmetry
- All crossings in ferromagnets: Weyl points

Binghai Yan Claudia Felser, Annual Review in Condensed Matter 8 (2017) 337 Zhijun Wang, et al., arXiv:1603.00479 Guoqing Chang et al., arXiv:1603.01255

Heusler, Weyl and Berry

Giant AHE in Co₂MnAl

 $\sigma_{xy} = 1800 \text{ S/cm}$ calc. $\sigma_{xy} \approx 2000 \text{ S/cm}$ meas.

$$\sigma_{xy}^{A}(\mu) = ie^{2} \left(\frac{1}{2\pi}\right)^{3} \int_{k} dk \sum_{E(n,k) < \mu} f(n,k,\mu) \Omega_{n,xy}(k),$$

Compound ^a	N_V	<i>a</i> (nm)	<i>M</i> ^{exp}	M^{calc}	σ_{xy}	P (%)
Co ₂ VGa	26	0.5779	1.92	1.953	66	65
Co ₂ CrAl	27	0.5727	1.7	2.998	438	100
Co ₂ VSn	27	0.5960	1.21	1.778	-1489	35
Co ₂ MnAl	28	0.5749	4.04	4.045	1800	75
Rh ₂ MnAl	28	0.6022		4.066	1500	94
Mn ₂ PtSn ^b	28	0.4509 (1.3477)		6.66	1108	91
Co ₂ MnSn	29	0.5984	5.08	5.00	118	82
Co ₂ MnSi	29	0.5645	4.90	4.98	228	100

$$\rho_{xy}^{M} = (\alpha \rho_{xx} + \beta \rho_{xx}^{2}) M. ???$$

Kübler, Felser, PRB 85 (2012) 012405Vidal et al Appl.Phys.Lett. 99 (2011) 132509Kübler, Felser, EPL 114 (2016) 47005.

Heusler, Weyl and Berry

Giant AHE in Co₂MnAl

Co₂MnGa

PHYSICAL REVIEW B 85, 012405 (2012)

Berry curvature and the anomalous Hall effect in Heusler compounds

Jürgen Kübler^{1,*} and Claudia Felser²

$$\sigma_{xy}^{A}(\mu) = ie^{2} \left(\frac{1}{2\pi}\right)^{3} \int_{k} dk \sum_{E(n,k) < \mu} f(n,k,\mu) \Omega_{n,xy}(k),$$

Kübler, Felser, PRB 85 (2012) 012405 Vidal et al., Appl. Phys. Lett. 99 (2011) 132509

Kübler, Felser, EPL 114 (2016) 47005.

Berry curvature design

Berry curvature design

- giant spin Hall
- giant anomalous Hall
- giant topological Hall
- giant anomalous Nernst

J. Noky et al., Phys. Rev. B 98, 241106(R) (2018), arXiv:1807.07843, arXiv:1806.06753

Nernst effect

J. Noky et al., Phys. Rev. B 98, 241106(R) (2018)

Satya N. Guin, et al., NPG Asia Mater. 11, 16 (2019), arXiv:1806.06753 Sakain et al. Nature Physics 2018

Co₂MnGa – ferromagnetic nodal line

Series of ARPES cuts through the candidate line node

DFT, Weyl lines \overline{x} $-0.5 \ 0.0 \ 0.5 \ \overline{M}$ $k_{\nu} (\text{Å}^{-1})$

Belopolski, et al., Science accepted (2019) preprint arXiv:1712.09992

Heusler, Weyl and Berry

Manna et al., Phys. Rev. X 8 (2018) 041045, arXiv:1712.10174

Half-Heusler, $F\overline{4}3m$ (no. 216)

Heusler, Weyl and Berry

playing with symmetry: from Weyl to spingapless semiconductor

Manna et al., Phys. Rev. X 8 (2018) 041045, arXiv:1712.10174

Heusler, Weyl and Berry

Spin gapless

semiconductor

Ouardi, Fecher, Kübler, and Felser, Physical Review Letter 110 (2013) 100401 Manna et al., Phys. Rev. X 8 (2018) 041045, arXiv:1712.10174 Manna et al., Nature Review Materials, 3 (2018) 244 arXiv:1802.02838v1

high through put

Noky et al., in submitted

Heusler and Berry

$\boldsymbol{\rho}_{xy}^{M} = (\alpha \rho_{xx} + \beta \rho_{xx}^{2}) \boldsymbol{M}. \boldsymbol{???}$

- Co₂MnAl
- Co₂MnGa
- Rh₂MnAl
- Co₂MnIn
- Co₂CrGe
- Co₂CrSi
- CoFeMnSi
- ★ Co₂MnGe
- ★ Co₂MnSi
- ★ Co₂MnSn
- ★ Co₂FeAl

outline

- Introduction
- Topological insulators
- Weyl semimetals broken symmetry
- Magnetic Weyl semimetals
- New Fermions
- Outlook axion insultors and beyond

new Fermions

6-fold crossings

8-fold degenerate points

new Fermions

RESEARCH

RESEARCH ARTICLE SUMMARY

TOPOLOGICAL MATTER

Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals

Barry Bradlyn,
* Jennifer Cano, * Zhijun Wang, * M. G. Vergniory, C. Felser, R. J. Cava, B. Andrei Bernevig
†

- Chiral Crystals B20, Skyrmions, CoSi,
 - MnSi, PdGa, RhSi
- Superconductors

A15 superconductors: Nb₃Sn, Li₂Pd₃B

universe – on a lattice

Bringing order to the expanding fermion zoo

Carlo Beenakker Commentary Heisenberg (1930): We observe space as a continuum, but we might entertain the thought that there is an underlying lattice and that space is actually a crystal. Which particles would inhabit such a lattice world? Werner Heisenberg *Gitterwelt* (lattice world) hosted electrons that could morph into protons, photons that were not massless, and more peculiarities that compelled him to abandon "this completely crazy idea"

molecules with different chiralities have different properties

B20 type cubic noncentrosymmetric crystallographic structure described by the chiral P2₁3 space group nr 198

chiral crystals optical activity magnetochiral anisotropy

topological crystals unusual surface states large photogalvanic effect

...

...

...

new Fermions largest Fermi arc unusual phonon dynamics Gyrotropic magnetic effect Quantized circular photogalvanic effect

Non-chiral topological semimetal Mirror Е E_c Chiral topological semimetal F E_{C-} E_{c} k

Polycrystal PtAl, Homochiral PdGa Single crystals CoSi, MnSi, FeGe, RhSi, PtGa

Schröter et al. Nature Physics online 2019, preprint arXiv: 1812.03310

Fermi arcs

600meV

700meV

800meV

500meV

Fermi arcs

Sanchez et al. Nature online 2019, preprint arXiv:1812.04466

Fermi arcs

. ..

~60 meV

EDC intensity (a.u.)

-0.15

 \longrightarrow

EDC

k_x (Å-1)

-0.2

0.015 Å

F

Ċ

MDC sity (a

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

-0.25

0

MDC

cut

-0.1

0

Schröter et al. preprint arXiv: 1907.08723

quantized circular photogalvanic effect

DOI: 10.1038/ncomms15995

ARTICLE

Received 27 Dec 2016 | Accepted 18 May 2017 | Published 6 Jul 2017

Quantized circular photogalvanic effect in Weyl semimetals

Fernando de Juan^{1,2,3}, Adolfo G. Grushin¹, Takahiro Morimoto¹ & Joel E. Moore^{1,4}

CPGE trace is **effectively quantized** in terms of the **fundamental constants** e, h, c and ε_0 with no material-dependent parameters. This is so because the CPGE directly **measures the topological charge of Weyl points**, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Chiral topological semimetal

OPEN

Photogalvanic Effect

quantized circular photogalvanic effect

Excitation of Weyl fermions - a current that is quantized in units of material-independent fundamental constants over a range of photon energies

Frequency-independent plateau at low photon energy abruptly falls-off above 0.66 eV

What comes next?

correlated topological materials

with Binghai Yan, Jansen

with Bernevig, Sun, Gooth

axion insulator

The axion is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to
resolve the strong CP (combined symmetries of charge conjugation and parity) problem in quantum
chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as
a possible component of cold dark matter.

Wikipedia

correlated topological materials

axion insulator

Gooth et al. Nature accepted, preprint arXiv:1906.04510

axion insulator

The axion is a hypothetical elementary particle postulated by the Peccei–Quinn theory in 1977 to
resolve the strong CP (combined symmetries of charge conjugation and parity) problem in quantum
chromodynamics (QCD). If axions exist and have low mass within a specific range, they are of interest as
a possible component of cold dark matter.

Wikipedia

add a magnetic moment

more axion ...

0.3

0.2

0.1

0.0

-0.2

XW

Γ L

Selected for a Viewpoint in Physics

PHYSICAL REVIEW B 83, 205101 (2011)

Ś

Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates

Xiangang Wan,¹ Ari M. Turner,² Ashvin Vishwanath,^{2,3} and Sergev Y. Savrasov^{1,4} ¹National Laboratory of Solid State Microstructures and Department of Physics, Naniing University, Naniing 210093, China

FIG. 1. (Color online) Sketch of the predicted phase diagram

Negative longitudinal magnetoresistance in the density wave phase of $Y_2 Ir_2 O_7$

Abhishek Juyal,* Amit Agarwal,[†] and Soumik Mukhopadhyay[‡] Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India

catalysis

CATALYSIS

Topology does the water splits

Meiser Nature Reviews Materials 2017, doi:10.1038/natrevmats.2017.21

semimetals and 3D QHE

vision

new chemistry and physics

- New topological materials beyond the single particle picture
- high mobility, topological surface states for catalysis
- new emergent properties beyond condensed matter physics inspired by astrophysics and high energy physics

potential applications

- spintronics
- quantum computing
- energy conversion
- catalysis ...

thank you for your attention

Yulin Chen Stuart Parkin and teams

