Anomalies: both of the above, Landsteiner anomalous traspot

$$\frac{\text{Topological seminetals (TD)}}{\text{out description}}$$
out description \longrightarrow lattice description
we are going to autoch it in SD: Humbord
 $H_{+} = + \text{VEK}\vec{S} = \text{VE}(4x \text{ Sx} + \frac{1}{28} \text{ Sg} + \frac{1}{48 \text{ Sz}})$
 $E = \pm \frac{1}{4} \frac{1}{44} \frac{1}{48} \frac{1}{58} \frac{1$

But we know 1) Chura insulator has a
Hall conductivity
$$\Im_{32} = C \frac{e^2}{h}$$

2) Has edge states.
2) Has edge states.
3) The reas that the Hall containing of
a Weyl semi metal :
 $\Im_{32} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{33} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{33} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$
 $\Im_{34} = \int_{32}^{27} (h_2) dh_2 = DK_W G \frac{e^2}{h}$

FIEZD THEORY OF WEYL SEMIMETALS

Legendre transform:
$$\lambda = \Psi_{n}^{+}(w - H_{n})\Psi_{n}$$

to copy from hep: $\overline{\Psi} = \Psi^{+}\Gamma_{0}$ and we that $\Gamma_{0}^{-2} = 1$:
 $\overline{\Psi} = \frac{\Psi^{+}\Gamma_{0}}{\overline{\Psi}}(\Gamma_{0}W - \Gamma_{0}H_{n})\Psi$
 $S: \int d^{1}_{k} \Psi_{n}(\chi_{n}h^{m} - m + b_{n}J^{m}J_{s})\Psi_{n}\left\{\begin{array}{c} T_{s} = \Gamma_{s}\\ T_{s$

We refice that by is like a field that
distinguishes chirality because when
$$m=0$$
:
 $\overline{U_5} \ \Psi = \pm \Psi$

is this the most general theory? NO!
in a 4x4 space we have 16 matrices:

$$\frac{11}{15} = \frac{1}{5} = \frac{1}{5}$$

People have bound month on the
$$n=0$$
 b^m only kuch.
S-Jdh $\overline{\Psi}_{u}$ $\overline{\Psi}_{n}(K^{m}-eA^{n}+b^{m})$; Ψ_{u}
Recent interest in inhomogeneous Weyls:
(B) Hebroodbuchnes
(C) Inhomogeneous shrain
(C) Inhomogeneous shrain
(C) Inhomogeneous onegrehizorhen
(C) Inhomogeneous

 $\partial_{\mathcal{E}}(\Lambda_{L}+\Lambda_{R}) \approx \vec{\mathcal{E}} \cdot \vec{\mathcal{B}}$

This means that in the presence of drival and real e.m. fields neither the vector or the chiral current are conserved:

$$\frac{\partial}{\partial n} j_{5}^{n} = C\left(\vec{E} \cdot \vec{B} + \vec{E}_{5}\vec{B}_{5}\right) \qquad C = \frac{1}{2n^{2}}$$

$$\frac{\partial}{\partial n} j_{5}^{n} = C\left(\vec{E}_{5}\vec{B} + \vec{B}_{5} \cdot \vec{E}\right) \qquad (n \text{ hornble natural units})$$
How can this be? We toget to add the boundary. Bs cannot be constant on space.
$$\frac{b}{2}^{(x)} \int b_{5} \qquad b_{5} \qquad b_{5} \qquad b_{5} = ctant = B_{0}$$

$$\Rightarrow b(x,t) = b_{3} \times \hat{y}$$

$$b_{5} = b_{5} + b_{5} +$$

In such a way that $\int dx B_{5}^{2}(x) = 0$ Since $\int_{au}^{au} dx B_5^{2}(x) = \int_{au}^{au} dx \partial_x by =$ $= \int_{-\infty}^{\infty} dx \left[b_i f(x_i) - b_f f(x_f) + \int_{-\infty}^{\infty} \frac{b_f - b_i}{L_x} dx \right]$

= O

This is true for any B5 profile so the edge sontes always compensate the bell current responses

You can comme yourself using a lattice model The red ano may equations are: $\frac{\partial}{\partial x} \int_{S}^{m} = \frac{1}{2\pi^{2}} \left(\vec{E} \cdot \vec{B} + \frac{1}{3} \vec{E}_{S} \cdot \vec{B}_{S} \right)$ $\frac{\partial}{\partial x} \int_{S}^{m} = 0$ If you add M(x) you can interpolate between Topological insulators and over semimetals! going grants

