Intro to deconfined criticality & related ideas

Part 1: O(3) model and hedgehogs
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Criticality outside the Wilson-Fisher world

Most symmetry-breaking transitions in CMT can be understood via
Landau-Ginsburg / Wilson-Fisher.

Mean field + fluctuations,

_ 2 2.2 | 4
L=(Ve)"+m7¢"+¢" + ... 4-epsilon, etc.

Weirder things well-known in 1+1D (e.g. sigma models with
topological terms) but traditionally less discussed in higher D

This lecture: ‘non-Landau’ symmetry-breaking phase transitions in
3D that require either or gauge theories (partons).

Senthil Vishwanath Balents Sachdev Fisher 04... Motrunich Vishwanath 04
Tanaka Hu 05, Senthil Fisher 06.... Sandvik 07 ...

Part 1: 3D classical (focus on approach)
Part 2: 2+1D quantum (focus on gauge theory approach)



Part 1: The O(3) sigma model in 3D. What happens when you
forbid topological defects (hedgehogs)?

—

Part 2: The ‘deconfined’ Neel-VBS transition
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O(3) nonlinear sigma model with and without hedgehogs

U(1) symmetry from topological constraint; dimer model

Toy example: 1D dimer model
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Five-component NLoM for the O(3) model without hedgehogs

Emergent symmetry



O(3) nonlinear sigma model

Stat mech of O(3) vector in 3D (3+0) N = (N7, Na, N3)
//\7‘ ﬁ; — 1 d3 v]\_f 2
fﬂ»g} Z = | DNe sd d=(VN) N2 =1
!
5 1
‘Standard’ RG flow diagram:
O N S = O
3 Te 1=

Usually say this is in universality class of O(3) Landau-Ginsburg
theory (Wilson-Fisher).

However, let’s consider topological defects more carefully.



NP =1

Hedgehogs

In three dimensions can have pointlike defects as 72 (S?) = Z

. | L o e
Point sources of topological flux: J,™” = —— eua N - (9N x OxN)

Spacetime interpretation: skyrmion creation/annhilation events:
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Allow hedgehogs when we regularize NLoM path integral?



Two models

Allow hedgehogs when we regularize NLoM path integral?

Yes: Example: usual lattice O(3) model. Universal behaviour
same as Landau-Ginsburg theory: £ = (VN)? + m2N? + (N?)?

NS #0 (N$=o
O < S 7 O
0 e [
order exponential decay of correlations

No: New phase diagram with new universal behaviour

Motrunich, Vishwanath 04
Kamal, Murthy 93, ....

- =
N2 %0 <(\?3'> 0
O——<«—= 3 5
order power-law-correlated phase

D




Hedgehog-free O(3) model

80s: Question inspired by Kosterlitz & Thouless (2D XY): Cardy Hamber 80
are point defects are needed for the O(3) transition in 3D? Lau Dasgupta 87,88

Kamal & Murthy argued (numerics) for a disordering phase transition

(contrary to a previous suggestion) but with new exponents  Lau Dasgupta 88
Kamal, Murthy 93

Motrunich & Vishwanath: ‘disordered’ phase is nontrivial.

‘Photon’ phase of a gauge theory (also appearing in deconfined quantum
Crltlcallty) Motrunich, Vishwanath 04

Lncept = [(V —ia)z]* + &(V x a)® +m?|z[* + A|z/*

This lecture: different (ahistorical) route

No gauge theory until part 2: Instead, use a nonlinear sigma model
description introduced later in context of deconfined criticality .. .. 0

Senthil Fisher '06
| will also rely on a (perhaps eccentric) lattice

regularization using dimers g:igﬁmagouzﬁtmgﬁuwzk Qi 11
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Hedgehog-free O(3) model

Basic point: topological constraint — extra U(1) symmetry
whose conserved current is J;°P

Very heuristic (does not make sense as written!!):

7 ~ / DN e~ SIN] § (i)
“ /DeeiIdSwQ(V.JtOp) 9

U(1) symm: @ — 6 +const. ~ U(1)current:  J*P ~ 9,6

To make sense of this, let us consider a lattice version: dimer model

This will also allow numerical experimentation
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Five-component NLoM for the O(3) model without hedgehogs

Emergent symmetry



lEr

7 _ o~ BE[n] 5 energy: aligning
Z 1:[ 2. m,] interactions:

{n}
columnar order power-law correlated
Numerical phase liquid’
diagram: ( i @
Alet et al 06 l V AL
Charrier and Alet ®

temperature —



Dimer model = an anisotropic O(3) model

O(3) vector /N — columnar order parameter

columnar order

“ 4

|G

(N) #0 (N) =

Vacancy = hedgehog. Full-packing = no hedgehogs!

The dimer model is an (eccentric)
regularization of the
Hedgehog-free O(3) model!

3

cmlly>

t

plus cubic anisotropy ~ » N/

*~ site where i—1

2.m =0 (Only important in ordered phase)




Dimer model = an anisotropic O(3) model

O(3) vector /N — columnar order parameter

colum order
| ,
<N> 40 <N> ~

Equivalent phase diagram found numerically in a more
conventional O(3) model without hedgehogs  wotrunich & vishwanath 04

a) b) ol 0 hedgehog-free
@ 0 =0 O(3) ferromagnet paramagnet
0/ 0

(N) #0 (N) =0




Two order parameters

from | [ 95 1

P

Z7=%" / DO o~ BENI+I T, 0.(V.J*P[n]):
()

U(1) symm: 6 — 0 +const.  U(1) current: J,°° ~ 0,0

€

+10R

inserts a hedgehog (modifies delta function)

Imagine coarse-graining, retaining both order parameters:

—

N = (Ni, Na, Ns) (O ~ e’

0

“O(3)” vector hedgehog operator




Effective field theory?

—

N = (Ny, N2, N3) “O(3)” vector
@ ~ (cos0,sin0) hedgehog operator

(?

Landau-Ginsburg theory?  £=(VN)*+(V$)* + my N + m3é”* + (N?)* + ...

No — falls to capture topological intertwining of two order
parameters: . + 19, inserts topo. defect in NV

Instead, either:

« Gauge theory (fractionalise N)

Powell Chalker 08, Charrier Alet Pujol 08, Chen Gukelberger Trebst Alet Balents 09
(cf also Hedgehog-free O(3): Motrunich Vishwanath 04, DCP: Senthil Vishwanath Balents Sachdev Fisher 04)



Effective field theory?

Need: well-defined continuum version of the term

. 3 to 1 = X 7
¢ /Deezfd 0 (V.JF) » [recall JZOp: S—WEMVAN'((?VNX(%\N)]

One way to do this is to embed two order parameters in

(Note: n can be well-

— (N:Ey ]\fy7 NZ7 Ly s Spy) ﬁQ — 1 defined everywhere:

INI2=0 at hedgehogs)

NLoM for five real ‘order parameters’

Claim: desired imaginary term is Wess-Zumino-Witten term

2
/Dﬁ exp [—21 /d?’x(Vﬁ)Q + ..+ ik / du/d?’x e*len®9,n’0,n0,n*0,n°

g area (54

Let’s consider a simpler example: 1D (1+0D!)
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O(3) nonlinear sigma model with and without hedgehogs
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Toy example for appearance of WZW term: 1D dimers
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Five-component NLoM for the O(3) model without hedgehogs

Emergent symmetry



1D classical dimer model

The simplest lattice model you will meet in this school!
Full-packing allows only 2 configs (PBCs, L even):

el 4 =2
@ﬁ—@—@ k =D >«
—_— 7 —

_
N:ﬁ_‘ N:—i

Have defined Ising order parameter Nr.12 on links (staggered defn)

———eo G

= “Domain-wall free Ising model”: = =
\/\/\_J N — )
N =+ N=-|
As before, introduce 0 to impose the no-defect constraint:
Z = | DN D0 R O e Sﬂomr
..................................................................................................................................... )% N



1D dimers

Nsﬁ. N""‘-

COS X
Handwaving continuum limit: write NV = cosy, 7= | cosfsiny
sin 0 sin y

— /DN DO 6% D Or (Npy1/2—Ny_1/2)
— /DNDQ o~ 5 2r(Orp1—0r—1) (1+ Ny 11 /2)
N /Dﬁ 6_% [ dr (0,0)(14cos x)

This is the term that p182/2
occurs in path integral for spin-1/2!

It can be written in an form in terms of n(u, r),
l.e. field extended into a fictitious second dimension u



—

WZ term: n(r, u) 7i(r) (physicalfies)

—
arbitrary extension U

1(r,0) = (0,0, 1)

r "0
Z—/D* ame /1d /d*(a*xa*)
= 1 exp area(S7) ), U rn- (0.1 LT

1D WZ term yields “delta function”: topo defects in /N ~ ny only
allowed at insertions of ¢ ~ ny + ina

©
(
€
o ——G—o&
Nz=+| N=-|

O‘+
Aside: The above action, with r—t, describes a spin-1/2. There we
are familiar with the ‘topological intertwining’ of N~oz and el®~g+: ‘@




killing defects

1D WZ term vyields “delta function”: topo defects in N ~ 11 only
allowed at insertions of ¢*? ~ ny + ins

This generalizes to WZW model in 3D.
n = (sinx (cos @, sinf), COSXN)

Heuristically: integral over 6 imposes topological constraint forbidding
point defects in .

Exercise: fix config on a sphere inside 3D system to 1 = (O, 0, ]\7@),
where Nq has topological number Q. (If Q#0, then N has hedgehog(s)
inside the sphere.)

/ du/dgaj ) “0, nbé? n°o, ndé? n®

Show that integrating over 8 inside sphere gives zero if Q0.
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Hedgehog-free O(3) model — 5 cpt. NLoM




Hedgehog-free O(3) model — 5 cpt. NLoM

1

—> /Dﬁ exp [—2— /de(Vﬁ)Z + anisotropies + SWZW]

g

Anisotropies! Constrained by microscopic symmetries.
These are a subgroup of SO(5) rotations of (n1,...,ns5)

—

SO(3) rotations of (n1, N9, ng) — /N [cubic subgp O in dimer case]

—

U(1) rotations of (n4,n5)= ¢

SO(3) or O(3)? Are improper rotations of N allowed? (E.g. N = - N)

Yes: so O(3). But they exchange hedgehogs <= antihedgehogs, so
must be combined with ¢—¢” (improper rotation of ¢)

E.g. unit x-translation in dimer

30(3) X 0(2) model: N1—-N1, @—¢”




Emergent SO(5)?

NLoM explains two phases, and suggests interesting possibility:
emergent symmetry.

Let’s ask what happens if NLoM has SO(5)-invariant fixed point Lo
with only 1 relevant perturbation allowed by microscopic symm.

(probably not this simple in reality)

Classify perturbations in SO(5) reps:

1
Na XC(L? — NgNp — gn25ab Xc(é?:d — NgNpNchlg — ( : -), e SingletS,

relevant Irrelevant!

Microscopic SO(3)xO(2) [or Onx O(2)] 20(5) + (' -1T.) (2J\7 * —3¢°)
allows only 1 relevant perturbation: Lirrel

L50(5)

0« ® >®




Two phases — the two different orders

L= Lo+ (T —T.)(2N? - 35%)

Anisotropy drives phase transition between ordered phases:

(N) ()
o 0
Ordered phase for N Ordered phase for ¢
@ massive, integrate out N massive, integrate out

i ()




Paramagnetic (dimer I|qU|d) phase

- N EE E EEEEEEEEEEEEEE S S .. R R R R e ... E R e .y
-

(N)

£

- -
-------------------------------------------

Meaning of LRO in ¢? Hedgehogs are deconfined:

_0 “_) N-paramagnet
e (dimer liquid)

* (LY _BAFhedgehogSN !
(p(r)p*(r'))=e { o b= I/S N-ordered phase

Also power-law correlations due to goldstone mode of ¢~e':



Aside: liquid phase in dimer language

LA
Known that full-packing implies divergence-free flux

cf C. Laumann’s

lecture on spin ice
(wse bepartite strueture)

This implies power-law correlations in liquid phase (ef- Spin ice)

Usually we write ?}IA @ &AM and L« (£un ALY

= {Ju(r)J,(0)) ~

7O

This is an equivalent (dual) description: 5,,4,)‘54 Av /«9
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Five-component NLoM for the O(3) model without hedgehogs

Emergent symmetry at T.



Emergent SO(5)?

What happens at the critical point”? Examine using numerics on
dimer model sresiith, Powell, Nahum 18

. ) 7: “l ! i

_ "-"‘_-t — f—
S E/T petnll
Z — € xxh& ' !
| AT~ [
fully-packed AN~ / \
dimer configs A \*

lattice broken  U(1) broken

dimer crystal dimer liquid

Charrier & Alet 10; Powell, Chalker 08, Charrier Alet Pujol 08,
Chen Gukelberger Trebst Alet Balents 09

Vary interaction ¢ on squares
Also, fixed interaction on cubes

Simulated efficiently using loop updates.
There is an apparent critical point (may be extremely weakly 1st order).



Dimers: valid “regularization” of hedgehog-free O(3)?

|.e. Is cubic anisotropy irrelevant at critical point?

Empirically: yes, cubic anisotropy small & decreasing with L
over numerically accessible range

Measure of cubic ~ Slice thru N;
anisotropy: 014 = histogram:
e AN .
) .
0.03-
L—l.}\ |
'!!‘I '
0.011, | | L =42
12 32 72
L

Sreejith, Powell, Nahum 2019



Emergent SO(5) at Tc? Test 1 (¢z, ¥y, Ny Ny, N.)

Check emergent U(1) symmetry for (N, , ¥z)
First test: (©.%)/(N,*) should be independent of size L at T¢

(Compare (p.2)/(N,2) ~ L*Av=22) gt non-symmetric CFT)

0.06 1

0.09 1

0.04 1

0.03 1

0.02 = .
0.670 0.672 0.674

T




Emergent SO(5) at Tc? Test 2 (¢, ¥y, Nz, N, N,)

SO(5) constrains moments to vanish:

(fields normalized to

<¢x4> 9 <Naz295:132> — have unit variance)
004 i 3\\ i &\

%Q! ﬂo,% )
712 “\% VO s

0.004 - $10.004- f}
19 2,72 12 32 7

0.01 -

Agreement with SO(5) improves with L over entire range.
Whether exact or approx, looks like exact IR symmetry over
accessible range of scales!



Remarks

Very precise emergent SO(5) = 5-component sigma model is
natural effective field theory for hedgehog-free transition

Similar evidence for SO(5) in 2+1D Neel-VBS (Part 2)

However: these transitions may not truly be continuous
(although the relevant lengthscales are extremely large).
In that case SO(5) is approximate.

The apparent continuous transition may be due to a ‘nearby’ SO(5)
invariant fixed point that is inaccessible:
e.g. d slightly different from 3, or at slightly complex coupling.

AN, Chalker, Serna, Ortuno, Somoza 15 T*R
Wang, AN, Metlitski, Xu, Senthil PRX 17 4 }
- A

Still under debate Shao, Guo, Sandvik '16 /




Symmetry enhancement under RG flow
SO(3)x0(2) c SO(5)

SO(3)x0(2)

>

couplings breaking
SO(5) symmetry RG flow

SO(5)
® _ > symmetric
SO(5)-symmetric couplings

CFT

couplings breaking 4
SO(5) symmetry | SO(3)x0(2)

oy SO(5)
®— symmetric
couplings

See Serna, AN 18 and Wang, AN, Metlitski, Xu, Senthil '17 for more info



Summary (1)

Adding the topological constraint to the O(3) model led to a
new conserved flux, & corresponding
U(1) symmetry and U(1) order parameter.

Dimer model gives concrete lattice regularization
(with cubic anisotropy).

Aside: the 2+epsilon expansion for the O(3) model is really
about the hedgehog-free case, so does not describe the same
fixed point as the 4-epsilon expansion for O(3)!

AN, Chalker, Serna, Ortuno, Somoza '15
Cardy Hamber 80



Summary (2)

A useful effective field theory for O(3) without hedgehogs:
SO(5) sigma model, with anisotropies: SO(5)—0O(2)xSO(3)

Heuristically, “extra” components ~ integral rep of delta function,
killing topological defects.

SO(5) breaking terms seem to be (effectively) irrelevant at the
phase transition: emergent symmetry unifying two very different
operators

However this emergent symmetry may be only approximate
(conformal bootstrap, issues with scaling etc.)

This in itself is interesting: how to get “quasiuniversal” behaviour
at a (weak) first order transition?



Intro to deconfined criticality & related ideas

Part 2: The Neel-VBS transition

N
\J/

N
\J/

U/ \J

d\_ /A

d

\J/
|
|
|
|
|

J vV U vV WV

Adam Nahum (Oxford)
Les Houches, 8 Sept 2019



Plan: Lecture 2

The Neel to Valence-Bond-Solid (VBS) transition

Lightning summary: “particle-vortex duality” for 2+1D XY model

Effective NCCP1 field theory via vortices
Deconfined criticality RG flows

Relation to WZW model

Relation to hedgehog-free O(3)



Spin-1/2s on square lattice:  H = J>.5;.5; + ...

—

N = (—1)*tv§

(N) # 0 (B) #0

Neel order DCP VBS order

N = (N,,N,, N,) P = (Y, Py)

Senthil, Vishwanath, Balents, Sachdev, Fisher '04

Drive transition with e.g. sign-free 4-spin interaction (J-Q model) Sandvik ‘07



Spin-1/2s on square lattice:  H = J>.5;.5; + ...

it

“XY-like” order parameter (¢, )

(N) # 0 (B) #0

Neel order DCP VBS order

—

N = (—1)*tv§

NI

I 4 1 1

| B A A |

ISR B RN

N = (N,,N,, N.) 7 = (¢, ¢y)

Senthil, Vishwanath, Balents, Sachdev, Fisher '04

Drive transition with e.g. sign-free 4-spin interaction (J-Q model) Sandvik ‘07
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Lightning summary: “particle-vortex duality” for 2+1D XY model
Effective NCCP1 field theory via vortices

Deconfined criticality RG flows

Relation to WZW model

Relation to hedgehog-free O(3)



Duality between XY model and abelian Higgs model (2+1D)

Wilson-Fisher transition for XY ‘spin’ ¢ = ¢, + ¢, t

_ _ _ g} time
vortex in ¢ = particle of w field
cf D. Son’s lecture \

Lxvyv = |ng\2—|—m2\gb\2 -+ |qb|4 Lo.a = |(V —ia)w]*—m?|w|* + |w|* + (V x a)?

Phase diagram XY order XY disorder
2 e ——
m H photon u<w> — Ou nggs u<w> # Ou

Conserved U(1) current (9,.J, = 0 except at charged operator insertions)

Sy < i(¢7 0 — $0u07) J, o< (V x a),

U(1) order parameter (charged operator)

M Inserts Dirac monopole
a (source of quantised flux)

® (XY field)




Duality between XY model and abelian Higgs model (2+1D)

Closer look at the XY ordered phase m* < 0
o~ et

Lxy = |Vo*+m?|o|> + |¢|* — L o« (VO)?
xy = [Vo[HmIof + |9 x (V0) Goldstone mode
Dual language: w massive (no vortices!)

‘noncompact’:

Lon = [(V - m)w\z—m2|w|2 + \w[4 + (V X a)2 r Lo (V X a)2 no monopoles

What if we add explicit symmetry breaking?
L x (V)* + X, cos(pb) U(l) — 7,
RG relevant. Expand near minimum: mass for Goldstone mode.
Dual language: £ o (V x a)? + )\, (ME + M:P) e®P? ~ P ~ MP

Now a ‘compact’ gauge field with strength-p Dirac monopoles.
Duality implies monopoles are relevant and lead to a massive theory
(in fact a confining theory). Polyakov
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The Neel-VBS transition

Lightning summary: “particle-vortex duality” for 2+1D XY model

Effective NCCP1 field theory via vortices

- SYSNT Ak oy N~
Deconfined criticality RG flows ("ﬁ*\**‘f _*’« N & —

Relation to WZW model

Relation to hedgehog-free O(3)




Neel-VBS: Effective field theory via vortices Levin & senthil 04

First consider a standard Landau theory for an “XY-like” order
parameter p=qx+i@py with 4-fold anisotropy

Lrc = |Vo|* +m?o]° + []* + Aa(o* + ¢™)

Not right! Fails to capture quantum #s of vortices in ¢ :

T ¥ . / W S
spin-1/2 under spin SO(3)

In the Landau theory there is no simple way to correct quantum
#s of vortex. But in the dual theory this is easily done...



Neel-VBS: Effective field theory via vortices Levin & senthil 04

ey / \ I\ I\ p—— N

—~
‘—‘.‘r ‘—’ = SIS
—~ - WL -— ‘—\ — — ~
‘—"_'. ‘_’
— ' ' — W~
—‘

!

spln -1/2

Lra = |Vo|* +m?|o]* + |o|* + Ma(¢p* 4+ ¢**) _duality |

L.y =|(V—ia)w| — mz\w|2 + \w|4 +(V x a)* 4\, (/\/li — /\/124)

Now upgrade the “vortex field” to a SU(2)spin Spinor!

Lncepr = [(V —ia)z| — m?|z|* + |z|* + (V x a)® +04 (M2 + MY

A

=(2) [kt




Neel-VBS: Effective field theory Senthil etal 0%

Lncepr = [(V —ia)z| — m?|z]” + [2]* + (V x a)”

Neel order parameter VBS order parameter

N = z'5z Pz T+ 10y = M,

First pass at phase diagram
(building on XY duality and neglecting A4):

Higgs phase: Photon phase?
Condense z Z massive

—‘—

Neel order Critical point? VBS order

(N) # 0 (B) #0



Neel-VBS: SU(nh—) gives a solvable limit

We may consider the same phase transition for SU(n) spins

Place SU(n) fundamental (antifundamental)  _|-f 1 { & =T 1
on A (B) sublattice. ,EQ'Q."-g:
:-IIIIIIHIIIIIIIII!‘

SU(n) (antl)fundamental

L xceprt = |(V —ta)z| — m2|z\2 T ‘ZH + (V X @)2 +Aq (M, + M)

Z1 / t
 — 29 ? g} time
n A

Large n: theory with A4=0 solvable by saddle point/diagrams.
Cts phase transition, where A4 is strongly RG irrelevant (xa«<n).
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Lightning summary: “particle-vortex duality” for 2+1D XY model
Effective NCCP1 field theory via vortices
Deconfined criticality RG flows

Relation to WZW model

Relation to hedgehog-free O(3)



Senthil et al 04

Deconfined criticality RG flows

Lcer— = |(V —ia)z| —m?|z)* + |z]* + (V x a)® 42, (M2 + M)

Critical point: emergent noncompact gauge field: a critical spin liquid.
VBS o

Neel Free photon /

Goldstone mode @ ~ e’

> 4

0
>

2 '

T m L o< k(V xa)* 4+ M(ME+ M
Laual X £~ H(VO)? + X4 cos(40)

Near-critical VBS phase: hasregime <L <& L> &': spinons confined
with massive deconfined spinons (z). (Polyakov mechanism).



Senthil et al 04

Deconfined criticality RG flows

Higgs phase: Confined phase
Condense z Z massive
Neel order DCP VBS order

(N) #0 (B) # 0

* at n=2, DCP may in fact be very weakly 1st order transition with very

large but finite correlation length, and ‘quasiuniversal’ behaviour

AN, Chalker, Serna, Ortuno, Somoza 15, Alternative scenario see:
Wang, AN, Metlitski, Xu, Senthil 17 Shao, Guo, Sandvik ’16

In particular, the deconfined regime is clearly seen as
emergent U(1) symmetry in the distribution of (¢x,@y):

Sandvik 07




Intermediate summary

SRR

Higgs transitions in simple U(1) gauge theories can describe
direct continuous transitions between distinct ordered phases.

This is not possible in Landau-Ginsburg (without fine tuning).

Lxcer—r = [(V —ia)z| —m?|z]* + |2 + (V x a)* 40, (M} + M)

Irrelevance of monopoles at critical point —
Emergent noncompactness of gauge field.
Equivalent to emergent U(1) symmetry for VBS.




Aside: Vortices and LSM

2+1D Lieb-Schultz-Mattis thm: Spin-1/2 per unit cell
= no trivial paramagnet that preserves all symm Hastings 03

cf S. Parameswaran’s lecture

Spin-1/2 VBS vortex ‘enforces’ LSM:
makes sure we can't get a trivial phase
by disordering the VBS.

Spin-1/2 VBS vortex also prevents a trivial phase when we destroy
VBS long range order by pinning with quenched bond randomness

—'_' —'_' W N Savg Kimchi, AN, Senthil 18
WA A N W N SRR P SR~ .Af AS / At =3 ) )
a , Liu, Shao, Lin, Guo, Sandvik 18

pinned VBS < 9“* H H f*‘ *% H rb
domains e N N Yt O
R "‘5’, * _f*’, ﬁ" i A *"\

\\\\\\\\\

vortex spins
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An alternative effective field theory for Neel-VBS

From now on specialize to the original n=2 case.
LNCCPl — |(V — 7:CL>Z| — m2|Z‘2 -+ |Z‘4 -+ (V X GJ)Z

(Numerics support emergent U(1) near the transition, so | have
neglected monopoles.)

There is an alternative effective field theory for this transition,
which does not use ‘partons’.

It is the 5-component sigma model we met in Part 1.

- _
/ D1l exp 5 / d*x(Vii)? + anisotropies + Swzw
.29 |

ﬁ — (NazaNyaNza P Spy)



Sigma model from vortex considerations

One derivation of sigma model: introduce fermionic partons and
integ rate out. Tanaka Hu 05, Senthil Fisher 06, Abanov Weigmann

Instead, let’s use similar logic to above.
Start with effective theory for all order params w / o topo term:

1

/D’Fiexp {—2— /de(Vﬁ)Z + anisotropies n = (Ngy Ny, N, 00, 0y)
9

Problem: in this theory ¢ vortex is featureless.
Should carry spin-1/2!

— =
- 1—\
‘—\‘—\ ‘—\‘—\

jE‘iQ.iig;
JES ) (W) (5 ) ) (D =
spin-1/2

Claim (exercise): the WZW term solves this problem




vortices

— I 1 - ) 1 ]
/Dn exp | —— dS:U(Vn)Z -+ m )/ du/dgzc eadeenaaxnbé?ynC@zndﬁune'
0

- 2g area(S4
X ff —
Nt ’
BN

Consider a static vortex configuration of ¢ = (n1, n2).
Must have nonzero N(t) in core, since n2 = 1:

radial coord in plane polar coord in plane time

j ~ j siny=1 at infinity,
n = (sinx r)(cos ), sint), cos X(T)N(t)) cos y=1 at origin

Exercise: show that the path integral for unit vector N (¢)
reduces to the 0+1D path integral for a spin 1/2.




Sigma model from vortex considerations 2'1!"'!"'! :

| i
/Dﬁ exp [—2— /de(Vﬁ)Q + anisotropies — Swzw
g _

Topo term corrects spin of the ¢ vortex.

Anisotropies play a similar role to case of the dimer model.

(The higher order terms are different because of different microscopic
symmetries.)

Same effective theory as hedgehog-free O(3) [near critical point]
Senthil et al 04

Again very accurate emergent SO(5) at the critical point.

The emergent U(1) [=deconfinement] is a subgroup of SO(5).

AN, Chalker, Serna, Somoza, Ortuno 15
Suwa, Sen, Sandvik 16
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Relation to hedgehog-free O(3)

Previous heuristic picture for WZW term: kills hedgehogs in N.
So are hedgehogs absent here too? Yes (at critical point).

Microscopic calculation (Haldane 88) shows that hedgehog
(in spacetime) gives imaginary contribution to action.
Phase depends on spatial location on square lattice:

G_S il=1

Isolated hedgehogs suppressed by phase cancellation!

In fact hedgehog = monopole in the gauge theory:
A4 is a fugacity for strength-4 hedgehogs.



Relation to hedgehog-free O(3)

VBS o

T strength-4
A4 hedgehogs

-...

-
-
-“.‘— -

O(3) model

ordered phase of critical iaoint of powér—law phase
hedgehog-free hedgehog-free of hedgehog-
O(3) model O(3) model free O(3) model



Summary

Deconfined critical points: playground for many mechanisms in
critical phenomena, with simple lattice realisations

topological terms emergent gauge fields

emergent symmetries topological defects
non-Wilson-Fisher fixed points = anomalies

field theory dualities quasiuniversality

no time today - see Wang, AN, Metlitski, Xu, Senthil 17

Many insights for more complex systems (e.g. other order
parameters, other symmetries, with fermions, etc.)



Summary

Hedgehog-free

O(3) model
SO(5) sigma model Abelian Higgs
with WZW term <4+—>»  model with SU(2)

(+ anisotropies) flavour symmetry
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Some extensions Deconfined criticality with 4 components



Deconfined criticality with 4 cpts

We had 5 components going ‘soft’ at the transition:

ﬁ — (NxaNyaNza gpw,gpy)
If we reduce symmetry, we can gap out a component.
Easy-plane: reduce spin symmetry SO(3)—0O(2) 60H ~ N?

— Qin, He, You, Lu, Sen, Sandvik, Xu, Meng 17
T = (Nata Nyv P Spy) Motrunich Vishwanath 04

Favour one cpt of VBS, e.g. rectangular lattice:

Sato, Hohenadler Assaad 17, Metlitski Thorngren 18,

é
T, = (Nw, Ny, N, gpy) Zhao Weinberg Sandvik 18, Serna, AN 18,
’ Wang Kivelson Lee 15, Komargodski et al 18, ...

Many other models with the symmetry of one of these



Deconfined criticality with 4 cpts
The 4-cpt case has similar descriptions to the 5-cpt case:

Abelian Higgs model

Interesting transition with emergent Wang, AN, Metifski, Xu, Senthl 7
(although probably approximate) O(4) - He. You Lu Sen, Sandvik, Xu, Meng 17

Unusual (weak) 1st order transition with emergent symmetry!

Zhao Weinberg Sandvik 18
Serna, AN 18

Exciting possible application: Shastry Sutherland lattice

Zayed et al 17
. / ./ Zhao Weinberg Sandvik 18
n —= (Nx, Ny; N27 Dy -+ pr) \ \ Lee, You, Sachdev, Vishwanath 19
/ / Guo, Sun, Zhao, Wang, Hong et al, '19

NN
Experimental implications of DCP? SrCu;(BO3): % %



