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Criticality outside the Wilson-Fisher world
Most symmetry-breaking transitions in CMT can be understood via 
Landau-Ginsburg / Wilson-Fisher.

L = (r�)2 +m2�2 + �4 + . . .
Mean field + fluctuations, 
4-epsilon, etc.

Weirder things well-known in 1+1D  (e.g. sigma models with 
topological terms) but traditionally less discussed in higher D

Part 1: 3D classical (focus on sigma model approach)
Part 2: 2+1D quantum (focus on gauge theory approach)

This lecture: ‘non-Landau’ symmetry-breaking phase transitions in 
3D that require either topological terms or gauge theories (partons).

Senthil Vishwanath Balents Sachdev Fisher 04… Motrunich Vishwanath 04 
Tanaka Hu 05, Senthil Fisher 06…. Sandvik 07 …



Part 1: The O(3) sigma model in 3D. What happens when you 
forbid topological defects (hedgehogs)?

Part 2: The ‘deconfined’ Neel-VBS transition



Plan: Part I

O(3) nonlinear sigma model with and without hedgehogs

U(1) symmetry from topological constraint; dimer model

Toy example: 1D dimer model

Five-component NLσM for the O(3) model without hedgehogs

Emergent symmetry



O(3) nonlinear sigma model
Stat mech of O(3) vector in 3D (3+0)

‘Standard’ RG flow diagram:

Usually say this is in universality class of O(3) Landau-Ginsburg 
theory (Wilson-Fisher). 

However, let’s consider topological defects more carefully.

Z =

Z
D ~N e�

1
g

R
d3x (r ~N)2 | ~N |2 = 1

~N = (N1, N2, N3)



Hedgehogs

Point sources of topological flux: J top
µ =

1

8⇡
✏µ⌫� ~N · (@⌫ ~N ⇥ @� ~N)

In three dimensions can have pointlike defects as ⇡2(S
2) = Z

Spacetime interpretation: skyrmion creation/annhilation events:

Z
d2xJ top

0 = Qtop

5

(a)

(b)

FIG. 2: A skyrmion configuration of the field n̂r. In (a)
we show the vector (nx, ny) at different points in the XY
plane; note that n̂ ∝ (−1)x+yS⃗r, and so the underlying spins
have a rapid sublattice oscillation which is not shown. In (b)
we show the vector (nx, nz) along a section of (a) on the x
axis. Along any other section of (a), a picture similar to (b)
pertains, as the former is invariant under rotations about the
z axis. The skyrmion above has n̂(r = 0) = (0, 0, 1) and
n̂(|r| → ∞) = (0, 0,−1).

low energies near the QCP – the skyrmion number Q is
strictly conserved. The emergence of this conserved topo-
logical quantum number is the most fundamental mean-
ing of the irrelevance of the instantons.
We will also use this emergent topological conservation

law as a definition of a “deconfined” QCP. Indeed, typi-
cally the gauge theories that arise in various slave particle
descriptions of quantum magnets are compact. Specializ-
ing to a U(1) gauge theory, the compactness means that
instanton or monopole events in which the magnetic flux
changes by 2π are allowed configurations of the gauge
field in space-time. The proliferation of these instanton
events leads to confinement of the slave particles in the
gauge theory. In contrast, in a non-compact theory –
which emerges at low energies when monopoles are ir-
relevant – the total magnetic flux is strictly conserved.
This is a topological conservation law and may be under-
stood as a global U(1) symmetry in an appropriate dual
description. Indeed, we will explicitly construct such a
dual theory for the case of easy-plane anisotropy (and in
some other related models). Quite generally, then, the
emergence of a non-compact U(1) gauge theory at the
critical point between the Néel and VBS phases signi-

(a)

(b)

FIG. 3: A monopole event, taken to occur at the origin of
spacetime. An equal-time slice of spacetime at the tunnelling
time is represented following the conventions of Fig 2. So (a)
contains the vector (nx, ny); the spin configuration is radi-
ally symmetric, and consequently a similar picture is obtained
along any other plane passing through the origin. Similarly,
(b) is the representation of (nx, nz) along the x axis, and a
similar picture is obtained along any line in spacetime passing
through the origin. The monopole above has n̂r = r/|r|.

fies an extra emergent (dual) global U(1) symmetry for
the critical theory that is not present in the microscopic
Hamiltonian. This provides a rather precise characteri-
zation of a ‘deconfined’ critical point.
An important property of the deconfined fixed points

discussed in this paper is the appearance of two distinct
diverging length (or equivalently two time) scales close
to the transition - one of which rises as a power of the
other. This is directly due to the dangerous irrelevance
of monopoles. For the Néel-VBS transition on approach-
ing from the VBS side there is of course a diverging spin
correlation length ξ. However just beyond this length
scale the system has not yet chosen to pin itself into any
particular VBS ordered state. Rather it may be char-
acterized as fluctuating between different VBS configu-
rations. It settles down to a particular ordered state at
a larger length scale ξVBS. This new length scale may
also be characterized as the thickness of a domain wall in
the VBS order. The universal crossovers associated with
the critical fixed point describe the behavior on passing
through the length scale ξ. These are described by the
critical theory in Eq. (1.7). As explained above, this

Qtop = 1

Fig: Senthil et al 03

| ~N |2 = 1

Allow hedgehogs when we regularize NLσM path integral?



Two models
Allow hedgehogs when we regularize NLσM path integral?

Yes: Example: usual lattice O(3) model.  Universal behaviour 
same as Landau-Ginsburg theory: L = (r ~N)2 +m2 ~N2 + ( ~N2)2

No: New phase diagram with new universal behaviour
Motrunich, Vishwanath 04
Kamal, Murthy 93, .…

order power-law-correlated phase

order exponential decay of correlations



Hedgehog-free O(3) model
80s: Question inspired by Kosterlitz & Thouless (2D XY):
are point defects are needed for the O(3) transition in 3D?

Motrunich & Vishwanath: ‘disordered’ phase is nontrivial.
‘Photon’ phase of a gauge theory (also appearing in deconfined quantum 
criticality)

This lecture: different (ahistorical) route 

I will also rely on a (perhaps eccentric) lattice 
regularization using dimers

Cardy Hamber 80
Lau Dasgupta 87,88

Kamal & Murthy argued (numerics) for a disordering phase transition 
(contrary to a previous suggestion) but with new exponents

Motrunich, Vishwanath 04

Freedman Hastings Nayak Qi 11
Sreejith Powell Nahum 19

No gauge theory until part 2: Instead, use a nonlinear sigma model 
description introduced later in context of deconfined criticality                  Tanaka Hu ’05 

Senthil Fisher ’06 

Lau Dasgupta 88
Kamal, Murthy 93

LNCCP1 = |(r� ia)z|2 + (r⇥ a)2 +m2|z|2 + �|z|4
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Hedgehog-free O(3) model
Basic point: topological constraint → extra U(1) symmetry 

whose conserved current is J top
µ =

1

8⇡
✏µ⌫� ~N · (@⌫ ~N ⇥ @� ~N)

Very heuristic (does not make sense as written!!): 

“

Z
D✓ei

R
d3x ✓ (r.Jtop) ”

U(1) symm: U(1) current:  ✓ ! ✓ + const. J top
µ ⇠ @µ✓

To make sense of this, let us consider a lattice version: dimer model

Z ⇠
Z

D ~N e�S[ ~N ] �
�
r.J top

�

This will also allow numerical experimentation
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Classical dimer model on cubic lattice

energy: aligning 
interactions:

Z =
X

{n}

e��E[n]

 
Y

r

�Pnl,1

!

Numerical phase 
diagram:

temperature →

columnar order power-law correlated 
‘liquid’

d.o.f.:  link occupation #s: nl = 0, 1

each site r touches 1 dimer:
X

l2r

nl = 1

Alet et al 06
Charrier and Alet
….



Dimer model = an anisotropic O(3) model

O(3) vector      → columnar order parameter~N

columnar order ‘liquid’

h ~Ni 6= 0 h ~Ni = 0

Vacancy = hedgehog. Full-packing → no hedgehogs!
The dimer model is an (eccentric) 
regularization of the 
Hedgehog-free O(3) model!

plus cubic anisotropy ⇠
3X

i=1

N4
i

(Only important in ordered phase)
site whereX

nl = 0



Dimer model = an anisotropic O(3) model

O(3) vector      → columnar order parameter~N

columnar order ‘liquid’

h ~Ni 6= 0 h ~Ni = 0

Equivalent phase diagram found numerically in a more 
conventional O(3) model without hedgehogs Motrunich & Vishwanath 04

O(3) ferromagnet
hedgehog-free 
paramagnet

h ~Ni 6= 0 h ~Ni = 0

4

a) b)

0
0 0

0 0
0

FIG. 1: a) Decorated cubic lattice used in the simulations.
Spins live on the lattice points shown, and the monopole
number is defined within each cube. b) The only spin config-
urations accepted in the simulation are those that are either
hedgehog free, or have hedgehogs that can be paired uniquely
into isolated nearest neighbor hedgehog-antihedgehog pairs.
A schematic depiction of such a pairing is shown here in a
vertical section through an isolated pair.

with F! ∈ (−π,π]. Clearly, the flux is gauge invariant
and hence independent of the choice of reference vector
n∗. The physical meaning of the flux is most readily
appreciated by considering a triangular face with spins
n1, 2, 3, where it is approximately the spin chirality:

sinF△ ∼ n1 · (n2 × n3). (4)

The hedgehog number k enclosed in a given volume
is then the net flux out of this volume

∑

F! = 2πk,
which is guaranteed to be an integer from the previous
definitions. Note that the hedgehog number is simply
some function of the spins on a given cube. This defi-
nition is identical to the traditionally used definition of
hedgehog number for volumes that are bounded by tri-
angular faces. For more complicated geometries (like the
one employed in this work) however it is a much more
natural and powerful definition, since it does not rely on
an arbitrary triangulation of the faces and can be quickly
computed.
We now consider whether a disordered phase may be

obtained while suppressing the hedgehog configurations.
This will favour the ferromagnetic state which is clearly
free of hedgehogs; indeed with full hedgehog suppression
on the simple cubic lattice [13] an ordered phase was
found even at zero spin coupling. In the decorated lat-
tice shown in Fig. 1a, full hedgehog suppression in each
cube seems to give rise to a disordered state for small val-
ues of the spin coupling J . However, in order to open a
larger window of disordered phase, and obtain more solid
evidence of disorder in the system sizes available, we will
allow for hedgehog-antihedgehog fluctuations on nearest
neighbour (face sharing) cubes. In contrast to Ref. 14, we
will only allow for configurations with isolated hedgehog-
antihedgehog pairs; in other words if a cube contains a
hedgehog of strength q, it must contain a nearest neigh-
bour cube with a hedgehog of strength −q and no hedge-
hogs in all other nearest neighbour cubes. This is shown
schematically in Fig. 1b and gives an unambiguous pre-
scription for combining the hedgehog and antihedgehogs
into isolated, neutral pairs, and allows us to avoid alto-

gether the problems in the work of [14], where such an
isolation of pairs was not demanded.

To summarize, the statistical ensemble is defined as
follows. For each spin configuration, we determine the
hedgehog numbers associated with each cube of the lat-
tice. If this sample clears the constraint of no free hedge-
hogs, (we mentioned two versions of this constraint, full
suppression constraint and the isolated neutral pairs con-
straint), then this configuration is allowed in the ensem-
ble and is weighted with a relative probability determined
by the energy function (1).

We simulate this ensemble [22] using single spin
Metropolis updates in the restricted configuration space.
The data presented below is taken for 20,000-200,000
Metropolis steps per spin.

B. The Disordered Phase

We now discuss the results of the Monte Carlo simula-
tion with hedgehog suppression. First, in the absence of
any hedgehog suppression, the system is found to have
the usual Heisenberg ordering transition at Jc,Heis ≈
1.7. Implementing hedgehog suppression that only al-
lows neutral, isolated pairs of hedgehogs to occur, gives
a smaller but still sizeable region 0 ≤ J < 0.7 over
which the system remains magnetically disordered. This
can be seen in Fig. 2 where the magnetization per spin
m is plotted for varying system sizes with linear di-
mension L = 6, 8, 12, 16 (the total number of spins is
Nspin = 4L3). The magnetization per spin is seen to ap-
proach zero with increasing system size, for small enough
values of J . A more convincing demonstration is made
in the inset, where we plot the product of m and the
square root of the total number of spins. For disordered
spins, the average magnetization per spin is expected to

decrease as N−1/2
spin . Indeed, as seen in the figure, this

situation is realized at least for J < 0.5.

One may nevertheless worry if there is some other spin
order, such as antiferromagnetic or spiral order, that is
not detected by the above zero-momentum magnetiza-
tion. The most direct evidence against any magnetic or-
der is obtained from the spin-spin correlation, which is
found to be ferromagnetic throughout and rather short-
ranged. For J = 0 this is shown in Fig. 3, and the spin
correlation indeed decays very quickly, with the correla-
tion length of order one half lattice spacing. The above
does not mean that the spins are completely uncorre-
lated, rather that their correlation is more subtle as we
will see below.

This completes the evidence for the presence of a mag-
netically disordered phase P ∗ with suppressed hedge-
hogs. We now investigate the nature of this paramagnetic
phase.



Two order parameters

Z =
X

{n}

Z
D✓ e��E[n]+i

P
r ✓r(r.Jtop[n])r

U(1) symm: U(1) current:  ✓ ! ✓ + const. J top
µ ⇠ @µ✓

inserts a hedgehog (modifies delta function)e±i✓R

Imagine coarse-graining, retaining both order parameters:

~N = (N1, N2, N3) ' ⇠ ei✓

“O(3)” vector hedgehog operator

Z =
X

{n}

e��E[n]

 
Y

r

�Pnl,1

!

from



Effective field theory?

~N = (N1, N2, N3)

~' ⇠ (cos ✓, sin ✓)

“O(3)” vector

hedgehog operator

Landau-Ginsburg theory? L ?
= (r ~N)2 + (r~�)2 +m2

N
~N2 +m2

��
2 + ( ~N2)2 + . . .

No — fails to capture topological intertwining of two order 
parameters:                 inserts topo. defect in 'x + i'y ~N = (N1, N2, N3)

Powell Chalker 08, Charrier Alet Pujol 08, Chen Gukelberger Trebst Alet Balents 09
(cf also Hedgehog-free O(3): Motrunich Vishwanath 04, DCP: Senthil Vishwanath Balents Sachdev Fisher 04)

Instead, either:
• Gauge theory (fractionalise N)

• Sigma model with topological term



“

Z
D✓ei

R
d3x ✓ (r.Jtop) ”

Need: well-defined continuum version of the term

[recall                                               ] J top
µ =

1

8⇡
✏µ⌫� ~N · (@⌫ ~N ⇥ @� ~N)

One way to do this is to embed two order parameters in 

�� = (Nx, Ny, Nz, �x, �y)~n ~n2 = 1

Claim: desired imaginary term is Wess-Zumino-Witten term

Let’s consider a simpler example: 1D (1+0D!)

Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + . . .+

2⇡i

area(S4)

Z 1

0
du

Z
d3x ✏abcdena@xn

b@yn
c@zn

d@un
e

�

(Note: n can be well-
defined everywhere: 
|N|2=0 at hedgehogs)

Effective field theory?

NLσM for five real ‘order parameters’
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Emergent symmetry



1D classical dimer model
The simplest lattice model you will meet in this school!
Full-packing allows only 2 configs (PBCs, L even):

Have defined Ising order parameter Nr+1/2 on links (staggered defn)

As before, introduce θ to impose the no-defect constraint:

Z =

Z
DN D✓ ei

P
r ✓r[Nr+1/2�Nr�1/2]/2

Z = 2

= “Domain-wall free Ising model”: ❌



1D dimers

Handwaving continuum limit: write N = cos�, ~n =

0

@
cos�

cos ✓ sin�
sin ✓ sin�

1

A

=

Z
DN D✓ e�

i
2

P
r(✓r+1�✓r�1) (1+Nr+1/2)

Z =

Z
DN D✓ e

i
2

P
r ✓r (Nr+1/2�Nr�1/2)

!
Z

DN D✓ e�
i
2

R
dr (@r✓)(1+cos�)

This is the Wess-Zumino term that 
occurs in path integral for spin-1/2!

It can be written in an SO(3)-invariant form in terms of             ,
i.e. field extended into a fictitious second dimension u

~n(u, r)

ei⌦/2

!
Z

D~n



WZ term:
u

r

~n(r) (physical field)

arbitrary extension

~n(r, 0) = (0, 0, 1)

1

0

Z =

Z
D~n exp


� 2⇡i

area(S2)

Z 1

0
du

Z
dr ~n · (@r~n⇥ @u~n)

�

Aside: The above action, with r→t, describes a spin-1/2. There we 
are familiar with the ‘topological intertwining’ of N~σz and eiθ~σ+:

tσ+

|#i

|"i

1D WZ term yields “delta function”: topo defects in                only 
allowed at insertions of ei✓ ⇠ n2 + in3

N ⇠ n1

~n(r, u)

ei⌦/2



Heuristic picture for WZW term: killing defects
1D WZ term yields “delta function”: topo defects in                only 
allowed at insertions of ei✓ ⇠ n2 + in3

N ⇠ n1

This generalizes to WZW model in 3D.

~n =
⇣
sin� (cos ✓, sin ✓), cos� ~N

⌘

Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + . . .+

2⇡i

area(S4)

Z 1

0
du

Z
d3x ✏abcdena@xn

b@yn
c@zn

d@un
e

�Z
D✓ exp

~n = (0, 0, ~NQ)Exercise: fix config on a sphere inside 3D system to                          ,
where NQ has topological number Q. (If Q≠0, then N has hedgehog(s) 
inside the sphere.) 

Q

Heuristically: integral over ! imposes topological constraint forbidding 
point defects in N.

Show that integrating over θ inside sphere gives zero if Q≠0.
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Hedgehog-free O(3) model → 5 cpt. NLσM

or

Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies + SWZW

�Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies + SWZW

�Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies + SWZW

�
+ . . .�



Hedgehog-free O(3) model → 5 cpt. NLσM

E.g. unit x-translation in dimer 
model:  N1→-N1,  "→"* 

Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies + SWZW

�
or

[cubic subgp Oh in dimer case]SO(3) rotations of (n1, n2, n3) = ~N

U(1) rotations of (n4, n5)= ~'

SO(3) or O(3)? Are improper rotations of N allowed? (E.g. N → - N)

Yes: so O(3). But they exchange hedgehogs ↔  antihedgehogs, so 
must be combined with "→"* (improper rotation of ")

(n1, . . . , n5)
Anisotropies! Constrained by microscopic symmetries. 
These are a subgroup of SO(5) rotations of

SO(3) x O(2) 



Emergent SO(5)?
NLσM explains two phases, and suggests interesting possibility: 
emergent symmetry.

(probably not this simple in reality)

Classify perturbations in SO(5) reps:

X(2)
ab = nanb �

1

5
n2�ab X(4)

abcd = nanbncnd � (. . .),   …,   singlets,  …

irrelevant!

Microscopic SO(3)xO(2) [or Oh x O(2)]  
allows only 1 relevant perturbation:

L = L⇤
SO(5)+

T �!

na, 

relevant

L = L⇤
SO(5)+ (T � Tc)

�
2 ~N2 � 3~'2

�

+irrel

Let’s ask what happens if NLσM has SO(5)-invariant fixed point
with only 1 relevant perturbation allowed by microscopic symm.

L = L⇤
SO(5)+



L = L⇤
SO(5)+ (T � Tc)

�
2 ~N2 � 3~'2

�

Anisotropy drives phase transition between ordered phases:

Ordered phase for "
N massive, integrate out

Ordered phase for N
" massive, integrate out

Two phases → the two different orders

h'ih ~Ni



Paramagnetic (dimer liquid) phase

Ordered phase for "

h'ih ~Ni

Meaning of LRO in #? Hedgehogs are deconfined: 

h'(r)'⇤(r0)i �! const
N-ordered phase

N-paramagnet
(dimer liquid)

Also power-law correlations due to goldstone mode of           : #~    ei✓

= e���Fhedgehogs



Aside: liquid phase in dimer language

Known that full-packing implies divergence-free flux

Usually we write and

This is an equivalent (dual) description: 

cf C. Laumann’s 
lecture on spin ice

This implies power-law correlations in liquid phase

! hJµ(r)J⌫(0)i ⇠
3rµr⌫ � �µ⌫r2

r5
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Emergent SO(5)?
What happens at the critical point? Examine using numerics on 
dimer model

Z =
X

fully-packed
dimer configs

e�E/T

Vary interaction     on squares
Also, fixed interaction on cubes

t

Charrier & Alet 10; Powell, Chalker 08, Charrier Alet Pujol 08, 
Chen Gukelberger Trebst Alet Balents 09

Simulated efficiently using loop updates. 
There is an apparent critical point (may be extremely weakly 1st order).

Sreejith, Powell, Nahum 18

t
dimer liquiddimer crystal

U(1) brokenlattice broken



Dimers: valid “regularization” of hedgehog-free O(3)?

I.e. is cubic anisotropy irrelevant at critical point? 
3

Numerical algorithm Expectation values containing the
operators ' and Ñ' are explicitly given by

(
F Ñ'm_2'm®

_2

)
= �mm®

[(m_2)!]2

L3mZ0

…
 ÀCm

F ( ) e*E _T , (9)

where Cm is the set of all configurations with m
2

monopoles of
each sign. In our simulations, the only allowed monopoles are
empty sites, or “monomers”. (As a result, the sum defining the
global variable ' runs only over a single sublattice, and that
for Ñ' runs over the other sublattice.) Allowing overlapping
dimers would make no essential di�erence.

Our procedure for calculating such expectation values is
based upon the standard worm algorithm [30–32], but with an
additional update that allows the monopole number to change.
At each iteration, starting in a configuration with m

2
monopoles

of each sign, we either construct a worm, which gives a new
configuration with the samem, or apply a step that may change
the monopole number. Ifm = 0, this involves attempting to re-
move a dimer, leaving behind a pair of neighboring monopoles
of opposite charge. If m = 4 (i.e., if there are two monopoles
of each sign), we attempt to add a dimer, annihilating two
monopoles. If m = 2, either of these moves may be at-
tempted, with fixed relative probability. The location for the
attempted move is chosen randomly and the update is accepted
with the standard Metropolis probability for the resulting en-
ergy change.

This procedure e�ectively samples from an ensemble with
partition function

Ze� =

…
mÀ{0,2,4}

fm
…
 ÀCm

e
*E _T , (10)

where the weights fm can be calculated in terms of the prob-
abilities used at each step (whose values are chosen to opti-
mize the algorithm; see Supplemental Material). Comparison
with Eq. (9) then gives the desired quantities in terms of ex-
pectation values in this ensemble, conditioned on the number
of monopoles.

Results We first verify SO(3) symmetry of íN at the crit-
ical point for v4 = 10, extending the results of Ref. [33] at
v4 = 0. Figure 1(a) shows a cross section (with Nz = 0 [40])
through the probability distribution for the magnetization íN at
the critical temperature Tc. (The value of Tc is determined us-
ing the procedure described below.) The circular distribution
indicates that the microscopic symmetry under 90˝ rotations
of íN is enhanced to an emergent continuous symmetry at the
critical point. A quantitative measure of this emergent sym-
metry is provided by the ratio 6ÍN2

xN
2

y Î_ÍN4

x + N4

y Î, which
is plotted versus system size L at Tc in Fig. 1(b). This quan-
tity approaches unity as the system size increases, indicating
that the critical point has an emergent symmetry, at least under
45

˝ rotations. We argue that this provides strong evidence of
emergent continuous SO(3) symmetry.

We now turn to quantities that test for symmetry mixing íN
and ', focusing on v4 = 10. In this case, distribution func-
tions are not accessible, because ' cannot be expressed as an

FIG. 1. Monte Carlo results across the columnar ordering transition
for v

4
= 10. (a) Cross section, with Nz = 0, through the mag-

netization density distribution at the critical temperature Tc [deter-
mined in Fig. 2(a)], labeled by system size L. (b) Ratio of moments
6ÍN2

xN
2

y Î_ÍN4

x +N
4

y Î, which is equal to unity in the case of SO(3)
symmetry, plotted as a function of system size L at the critical tem-
perature T = Tc. The inset shows the absolute di�erence between
this ratio and unity, on a double-logarithmic scale, along with a fit
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observable in the dimer ensemble [39], and we therefore con-
sider moments of the quantities Nx and 'x.

The Binder cumulants for the magnetization, ÍN4

xÎ_ÍN2

xÎ2,
and for the monomer operator, Í'4

xÎ_Í'2

xÎ2, are shown in
Fig. 1(c) for a broad range of T . Both take the expected values
deep within the two phases (see Supplemental Material) and
they cross at approximately the same temperature, consistent
with a continuous phase transition directly between the dimer
crystal and dimer liquid. The first hint of SO(5) symmetry
is that the two Binder cumulants take the same value at their
crossing points. It should be noted that this value is not what
one would expect for a Gaussian probability distribution (viz
3), which would provide a trivial explanation for our SO(5)
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empty sites, or “monomers”. (As a result, the sum defining the
global variable ' runs only over a single sublattice, and that
for Ñ' runs over the other sublattice.) Allowing overlapping
dimers would make no essential di�erence.

Our procedure for calculating such expectation values is
based upon the standard worm algorithm [30–32], but with an
additional update that allows the monopole number to change.
At each iteration, starting in a configuration with m
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of each sign, we either construct a worm, which gives a new
configuration with the samem, or apply a step that may change
the monopole number. Ifm = 0, this involves attempting to re-
move a dimer, leaving behind a pair of neighboring monopoles
of opposite charge. If m = 4 (i.e., if there are two monopoles
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where the weights fm can be calculated in terms of the prob-
abilities used at each step (whose values are chosen to opti-
mize the algorithm; see Supplemental Material). Comparison
with Eq. (9) then gives the desired quantities in terms of ex-
pectation values in this ensemble, conditioned on the number
of monopoles.

Results We first verify SO(3) symmetry of íN at the crit-
ical point for v4 = 10, extending the results of Ref. [33] at
v4 = 0. Figure 1(a) shows a cross section (with Nz = 0 [40])
through the probability distribution for the magnetization íN at
the critical temperature Tc. (The value of Tc is determined us-
ing the procedure described below.) The circular distribution
indicates that the microscopic symmetry under 90˝ rotations
of íN is enhanced to an emergent continuous symmetry at the
critical point. A quantitative measure of this emergent sym-
metry is provided by the ratio 6ÍN2
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y Î, which
is plotted versus system size L at Tc in Fig. 1(b). This quan-
tity approaches unity as the system size increases, indicating
that the critical point has an emergent symmetry, at least under
45

˝ rotations. We argue that this provides strong evidence of
emergent continuous SO(3) symmetry.

We now turn to quantities that test for symmetry mixing íN
and ', focusing on v4 = 10. In this case, distribution func-
tions are not accessible, because ' cannot be expressed as an
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Emergent SO(5) at Tc? Test 1 Nx, Ny, Nz'x,'y,( )
Check emergent U(1) symmetry for (      ,     )Nx 'x

First test:       should be independent of size L at Tch'x
2i/hNx

2i

(Compare  at non-symmetric CFT)h'x
2i/hNx

2i ⇠ L2(�N��')

(a)

(b)
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SO(5) constrains moments to vanish:

Agreement with SO(5) improves with L over entire range. 
Whether exact or approx, looks like exact IR symmetry over 
accessible range of scales!

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

hÑx
4i

h'̃x
4i � 1 = 0
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2'̃x

2i
� 1 = 0

Nx, Ny, Nz'x,'y,( )

(fields normalized to 
have unit variance)

L

Emergent SO(5) at Tc? Test 2



Remarks

Very precise emergent SO(5) → 5-component sigma model is 
natural effective field theory for hedgehog-free transition

Similar evidence for SO(5) in 2+1D Neel-VBS (Part 2)

However: these transitions may not truly be continuous 
(although the relevant lengthscales are extremely large). 
In that case SO(5) is approximate.

The apparent continuous transition may be due to a ‘nearby’ SO(5) 
invariant fixed point that is inaccessible: 
e.g. d slightly different from 3, or at slightly complex coupling.

AN, Chalker, Serna, Ortuno, Somoza 15
Wang, AN, Metlitski, Xu, Senthil PRX 17

�

d

d�⌧⇤

⌧

girrelevant
Still under debate  Shao, Guo, Sandvik ’16 



Symmetry enhancement under RG flow 
GUV ⊂ G

SO(5)-symmetric 
CFT

couplings breaking 
SO(5) symmetry

SO(3)xO(2)

SO(5) 
symmetric 
couplings

SO(5) 
symmetric 
couplings

couplings breaking 
SO(5) symmetry SO(3)xO(2)

RG flow

See Serna, AN ’18  and  Wang, AN, Metlitski, Xu, Senthil ’17  for more info

SO(3)xO(2) ⊂ SO(5)



Summary (1)

Adding the topological constraint to the O(3) model led to a 
new conserved flux, & corresponding  
U(1) symmetry and U(1) order parameter.

Aside: the 2+epsilon expansion for the O(3) model is really 
about the hedgehog-free case, so does not describe the same 
fixed point as the 4-epsilon expansion for O(3)!  

Dimer model gives concrete lattice regularization 
(with cubic anisotropy).

AN, Chalker, Serna, Ortuno, Somoza ’15
Cardy Hamber 80



A useful effective field theory for O(3) without hedgehogs: 
SO(5) sigma model, with anisotropies: SO(5)→O(2)xSO(3)

SO(5) breaking terms seem to be (effectively) irrelevant at the 
phase transition: emergent symmetry unifying two very different 
operators

However this emergent symmetry may be only approximate 
(conformal bootstrap, issues with scaling etc.)

This in itself is interesting: how to get “quasiuniversal” behaviour 
at a (weak) first order transition? 

Heuristically, “extra” components ~ integral rep of delta function,
killing topological defects.

Summary (2)



Intro to deconfined criticality & related ideas

Part 2: The Neel-VBS transition

Adam Nahum (Oxford)
Les Houches, 8 Sept 2019
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The Neel to Valence-Bond-Solid (VBS) transition

Effective NCCP1 field theory via vortices

Relation to WZW model

Relation to hedgehog-free O(3)

Deconfined criticality RG flows



Spin-1/2s on square lattice:

~N = (Nx, Ny, Nz) ~' = ('x,'y)

H = J
P

~Si.
~Sj + . . .

Neel order VBS order

h~'i 6= 0

DCP

h ~Ni 6= 0

~N = (�1)x+y ~S

Senthil, Vishwanath, Balents, Sachdev, Fisher ’04

Drive transition with e.g. sign-free 4-spin interaction (J-Q model) Sandvik ’07



Spin-1/2s on square lattice: H = J
P

~Si.
~Sj + . . .

Neel order VBS order

h~'i 6= 0

DCP

h ~Ni 6= 0

Senthil, Vishwanath, Balents, Sachdev, Fisher ’04

~N = (Nx, Ny, Nz) ~' = ('x,'y)

~N = (�1)x+y ~S

Sandvik ’07Drive transition with e.g. sign-free 4-spin interaction (J-Q model) 

“XY-like” order parameter ('x,'y)
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Duality between XY model and abelian Higgs model (2+1D)

Phase diagram XY disorder

Higgs: “             ”  photon:  “             ”    hwi = 0 hwi 6= 0

XY order

m2 �!

U(1) order parameter (charged operator)

Ma
Inserts Dirac monopole
(source of quantised flux)(XY field)�

Conserved U(1) current (             except at charged operator insertions)@µJµ = 0

Jµ / i(�⇤@µ�� �@µ�
⇤) Jµ / (r⇥ a)µ

vortex in ϕ = particle of w field

� = �x + i�yWilson-Fisher transition for XY ‘spin’

LaH = |(r� ia)w|2�m2|w|2 + |w|4 + (r⇥ a)2LXY = |r�|2+m2|�|2 + |�|4

time

cf D. Son’s lecture



Duality between XY model and abelian Higgs model (2+1D)
Closer look at the XY ordered phase

LaH = |(r� ia)w|2�m2|w|2 + |w|4 + (r⇥ a)2

LXY = |r�|2+m2|�|2 + |�|4

m2 < 0

Goldstone mode 
' ⇠ ei✓L / (r✓)2

Dual language: w massive (no vortices!)

L / (r⇥ a)2

�!

�!

What if we add explicit symmetry breaking?

L / (r✓)2 + �p cos(p✓) U(1) ! Zp

RG relevant. Expand near minimum: mass for Goldstone mode.

Dual language: eip✓ ⇠ �p ⇠ Mp
aL / (r⇥ a)2 + �p (Mp

a +M⇤p
a )

Now a ‘compact’ gauge field with strength-p Dirac monopoles. 
Duality implies monopoles are relevant and lead to a massive theory 
(in fact a confining theory).

‘noncompact’: 
no monopoles

Polyakov 
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Neel-VBS: Effective field theory via vortices Levin & Senthil 04

spin-1/2 under spin SO(3)
In the Landau theory there is no simple way to correct quantum 
#s of vortex. But in the dual theory this is easily done…

LLG = |r�|2 +m2|�|2 + |�|4 + �4(�
4 + �⇤4)

First consider a standard Landau theory for an “XY-like” order 
parameter "="x+i"y with 4-fold anisotropy

Not right! Fails to capture quantum #s of vortices in     :~�



Neel-VBS: Effective field theory via vortices

spin-1/2

LLG = |r�|2 +m2|�|2 + |�|4 + �4(�
4 + �⇤4)

LaH = |(r� ia)w|�m2|w|2 + |w|4 + (r⇥ a)2

Now upgrade the “vortex field” to a SU(2)spin spinor!

z =

✓
z1
z2

◆

+�4

�
M4

a +M⇤4
a

�

LNCCP1 = |(r� ia)z|�m2|z|2 + |z|4 + (r⇥ a)2 +�4

�
M4

a +M⇤4
a

�

time

duality

Levin & Senthil 04



Neel-VBS: Effective field theory Senthil et al 04

~N = z†~�z 'x + i'y = Ma

Neel order parameter VBS order parameter

First pass at phase diagram 
(building on XY duality and neglecting λ4):

VBS order
h~'i 6= 0

Critical point?Neel order
h ~Ni 6= 0

Higgs phase: Photon phase?

LNCCP1 = |(r� ia)z|�m2|z|2 + |z|4 + (r⇥ a)2 +�4

�
M4

a +M⇤4
a

�

Condense z z massive 



Neel-VBS: SU(n→∞) gives a solvable limit

SU(n) (anti)fundamental

We may consider the same phase transition for SU(n) spins

Place SU(n) fundamental (antifundamental) 
on A (B) sublattice. 

LNCCP1 = |(r� ia)z|�m2|z|2 + |z|4 + (r⇥ a)2 +�4

�
M4

a +M⇤4
a

�
NCCPn�1

z =

0

BB@

z1
z2
. . .
zn

1

CCA
time

Large n: theory with λ4=0 solvable by saddle point/diagrams. 
Cts phase transition, where λ4 is strongly RG irrelevant (x4∝n).
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Deconfined criticality RG flows Senthil et al 04

LNCCP1 = |(r� ia)z|�m2|z|2 + |z|4 + (r⇥ a)2 +�4

�
M4

a +M⇤4
a

�
NCCPn�1

�4

 � m2

 
�

m
2

⇠

⇠0

Neel

VBS

critical

L / (r⇥ a)2 + �4(M4
a +M⇤4

a )

Ldual / �1(r✓)2 + �4 cos(4✓)

(
Free photon / 

Goldstone mode ' ⇠ ei✓

Near-critical VBS phase: has regime ξ < L < ξ’ 
with massive deconfined spinons (z).

L> ξ’: spinons confined 
(Polyakov mechanism).

Critical point: emergent noncompact gauge field: a critical spin liquid.



Deconfined criticality RG flows Senthil et al 04

VBS order
h~'i 6= 0

DCPNeel order
h ~Ni 6= 0

Higgs phase: Confined phase
Condense z z massive 

* at n=2, DCP may in fact be very weakly 1st order transition with very 
large but finite correlation length, and  ‘quasiuniversal’ behaviour

Emergent XY symmetry for dimer order

In particular, the deconfined regime is clearly seen as 
emergent U(1) symmetry in the distribution of ("x,"y):

Sandvik 07 "x

"y

AN, Chalker, Serna, Ortuno, Somoza 15, 
Wang, AN, Metlitski, Xu, Senthil 17

Alternative scenario see:  
Shao, Guo, Sandvik ’16 



Intermediate summary

Higgs transitions in simple U(1) gauge theories can describe 
direct continuous transitions between distinct ordered phases. 

Irrelevance of monopoles at critical point →
Emergent noncompactness of gauge field.
Equivalent to emergent U(1) symmetry for VBS.

LNCCP1 = |(r� ia)z|�m2|z|2 + |z|4 + (r⇥ a)2 +�4

�
M4

a +M⇤4
a

�
NCCPn�1

Emergent XY symmetry for dimer order

This is not possible in Landau-Ginsburg (without fine tuning).



Aside: Vortices and LSM
2+1D Lieb-Schultz-Mattis thm: Spin-1/2 per unit cell
⇒ no trivial paramagnet that preserves all symm

Spin-1/2 VBS vortex also prevents a trivial phase when we destroy 
VBS long range order by pinning with quenched bond randomness

Spin-1/2 VBS vortex ‘enforces’ LSM: 
makes sure we can’t get a trivial phase 
by disordering the VBS.

Kimchi, AN, Senthil 18
Liu, Shao, Lin, Guo, Sandvik 18

pinned VBS 
domains

vortex spins

Hastings 03
cf S. Parameswaran’s lecture
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An alternative effective field theory for Neel-VBS

From now on specialize to the original n=2 case.

(Numerics support emergent U(1) near the transition, so I have 
neglected monopoles.)

LNCCP1 = |(r� ia)z|�m2|z|2 + |z|4 + (r⇥ a)2

There is an alternative effective field theory for this transition, 
which does not use ‘partons’.

Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies + SWZW

�
It is the 5-component sigma model we met in Part 1.

�� = (Nx, Ny, Nz, �x, �y)~n



Sigma model from vortex considerations
One derivation of sigma model: introduce fermionic partons and 
integrate out. Tanaka Hu 05, Senthil Fisher 06, Abanov Weigmann

spin-1/2

Instead, let’s use similar logic to above. 
Start with effective theory for all order params w / o topo term:
Z

D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies

�

Problem: in  this theory " vortex is featureless. 
Should carry spin-1/2!

�� = (Nx, Ny, Nz, �x, �y)~n

Claim (exercise): the WZW term solves this problem



Heuristic picture for WZW term 2: vortices
Z

D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies + SWZW

�Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies + SWZW

�Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + . . .+

2⇡i

area(S4)

Z 1

0
du

Z
d3x ✏abcdena@xn

b@yn
c@zn

d@un
e

�

Consider a static vortex configuration of " = (n1, n2).

~n =
⇣
sin�(r)(cos , sin ), cos�(r)N̂(t)

⌘
radial coord in plane polar coord in plane time

sin$=1 at infinity, 
cos$=1 at origin

Must have nonzero N(t) in core, since n2 = 1:

Exercise: show that the path integral for unit vector        
reduces to the 0+1D path integral for a spin 1/2.

~n =
⇣
sin�(r)(cos , sin ), cos�(r)N̂(t)

⌘

~n =
⇣
sin�(r)(cos , sin ), cos�(r)N̂(t)

⌘



Sigma model from vortex considerations

Topo term corrects spin of the " vortex.

�� = (Nx, Ny, Nz, �x, �y)~n

Anisotropies play a similar role to case of the dimer model. 
(The higher order terms are different because of different microscopic 
symmetries.)

Again very accurate emergent SO(5) at the critical point.
The emergent U(1) [=deconfinement] is a subgroup of SO(5).

AN, Chalker, Serna, Somoza, Ortuno 15
Suwa, Sen, Sandvik 16

Same effective theory as hedgehog-free O(3) [near critical point]
Senthil et al 04

Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies

�Z
D~n exp


� 1

2g

Z
d3x(r~n)2 + anisotropies + SWZW

�
�

L = L⇤
SO(5)+ (T � Tc)

�
2 ~N2 � 3~'2

�
(K �Kc) + . . .
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Lightning summary: “particle-vortex duality” for 2+1D XY model
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Deconfined criticality RG flows



Previous heuristic picture for WZW term: kills hedgehogs in N. 
So are hedgehogs absent here too? Yes (at critical point).

Relation to hedgehog-free O(3)

Microscopic calculation (Haldane 88) shows that hedgehog 
(in spacetime) gives imaginary contribution to action. 
Phase depends on spatial location on square lattice:

e�S
1 i

�1�i

Isolated hedgehogs suppressed by phase cancellation!

In fact hedgehog = monopole in the gauge theory:
     is a fugacity for strength-4 hedgehogs.�4



Relation to hedgehog-free O(3)
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Summary
Deconfined critical points: playground for many mechanisms in 
critical phenomena, with simple lattice realisations

topological terms

emergent symmetries

emergent gauge fields

topological defects

anomalies

field theory dualities

non-Wilson-Fisher fixed points

quasiuniversality

Many insights for more complex systems (e.g. other order 
parameters, other symmetries, with fermions, etc.)

no time today - see Wang, AN, Metlitski, Xu, Senthil 17



Hedgehog-free 
O(3) model

SO(5) sigma model 
with WZW term 
(+ anisotropies)

Abelian Higgs 
model with SU(2) 
flavour symmetry

Summary
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Some extensions Deconfined criticality with 4 components



Deconfined criticality with 4 cpts
We had 5 components going ‘soft’ at the transition:

If we reduce symmetry, we can gap out a component.

Easy-plane: reduce spin symmetry SO(3)→O(2) 

�� = (Nx, Ny, Nz, �x, �y)~n

�� = (Nx, Ny, Nz, �x, �y)~n�� = (Nx, Ny, Nz, �x, �y)

Favour one cpt of VBS, e.g. rectangular lattice:

�� = (Nx, Ny, Nz, �x, �y)~n�� = (Nx, Ny, Nz, �x, �y)

�H ⇠ N
2
z

Many other models with the symmetry of one of these

Qin, He, You, Lu, Sen, Sandvik, Xu, Meng 17
Motrunich Vishwanath 04
…

Sato, Hohenadler Assaad 17, Metlitski Thorngren 18, 
Zhao Weinberg Sandvik 18,  Serna, AN 18,
Wang Kivelson Lee 15, Komargodski et al 18, …



Deconfined criticality with 4 cpts
The 4-cpt case has similar descriptions to the 5-cpt case: 

�� = (Nx, Ny, Nz, �x, �y)~n 'x + 'y)

Interesting transition with emergent 
(although probably approximate) O(4)

Abelian Higgs model 4-cpt sigma model with theta term

Exciting possible application: Shastry Sutherland lattice

Signatures of a Deconfined Phase Transition on the Shastry-Sutherland Lattice:

Applications to Quantum Critical SrCu2(BO3)2

Jong Yeon Lee,1 Yi-Zhuang You,1, 2 Subir Sachdev,1 and Ashvin Vishwanath1

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, University of California, San Diego, California 92093, USA

(Dated: April 15, 2019)

We study a possible deconfined quantum phase transition in a realistic model of a two-dimensional
Shastry-Sutherland quantum magnet, using both numerical and field theoretic techniques. Using
the infinite density matrix renormalization group (iDMRG) method, we verify the existence of
an intermediate plaquette valence bond solid (pVBS) order, with two fold degeneracy, between
the dimer and Néel ordered phases. We argue that the quantum phase transition between the
Néel and pVBS orders may be described by a deconfined quantum critical point (DQCP) with an
emergent O(4) symmetry. By analyzing the correlation length spectrum obtained from iDMRG, we
provide evidence for the DQCP and emergent O(4) symmetry in the lattice model. Such a phase
transition has been reported in the recent pressure tuned experiments in the Shastry-Sutherland
lattice material SrCu2(BO3)2 [1]. The non-symmorphic lattice structure of the Shastry-Sutherland
compound leads to extinction points in the scattering, where we predict sharp signatures of a DQCP
in both the phonon and magnon spectra associated with the spinon continuum. The e↵ect of weak
interlayer couplings present in the three dimensional material is also discussed. Our results should
help guide the experimental study of DQCP in quantum magnets.
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I. INTRODUCTION

Quantum magnets can host some of the most exotic
phenomena in condensed matter physics, due to the
strong quantum fluctuations of the microscopic spin de-
grees of freedom. Notably, deconfined gauge fluctuations
and fractionalized spinon excitations can emerge in quan-
tum magnets, which bear no analog in classical spin sys-
tems. Such behavior can exist either in a quantum spin
liquid, which is a stable phase of matter with topolog-
ical order [2–4]; or by tuning a single parameter to a
critical point known as the deconfined quantum critical
point (DQCP)[5, 6]. The DQCP describes the possible
continuous phase transition between two distinct sym-
metry breaking phases beyond the conventional Landau-
Ginzburg paradigm. While the search for quantum spin
liquids is still an ongoing research e↵ort in condensed
matter physics [7], the possibility of observing the DQCP
in materials could provide us with an alternative oppor-
tunity to study the properties of deconfined spinons and
emergent gauge fields in quantum magnets.

In a recent experiment[1], a phase transition between
Néel antiferromagnet and plaquette valence bond solid
(pVBS) was observed in a single crystal of SrCu2(BO3)2
under pressure. The material is a layered quantum mag-
net. Within each two-dimensional layer, the copper ions
carry the spin-1/2 degrees of freedom and are arranged on
a Shastry-Sutherland lattice as shown in Fig. 1(a). The
spin system was proposed to be e↵ectively described by
the Shastry-Sutherland model[8, 9]

H = J1
X

ij2n.n.

Si · Sj + J2
X

ij2dimer

Si · Sj , (1)

where the J1 and J2 bonds are specified according to
Fig. 1(a). The ratio J1/J2 between the coupling con-
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Unusual (weak) 1st order transition with emergent symmetry!

Experimental implications of DCP?
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stants is tunable by pressure in experiments within cer-
tain range. In the large J1 (or large J2) limit, the
model reduces to the square lattice Heisenberg model
(or the decoupled dimerized model), which stabilizes the
Néel phase (or the dimer valence bond solid (dVBS)
phase). Between these two limits, numerical[10–14] and
theoretical[15] analysis of the model have revealed an in-
termediate plaquette valence bond solid (pVBS) phase,
as illustrated in Fig. 1(c). Remarkably, experiments[1]
seem to confirm this phase diagram. A recent numer-
ical diagonalization study[16] further proposes the pos-
sibility of two intermediate phases, but which of them
is the pVBS phase remains unclear. Presumably, the
pVBS phase should be the one contiguous to the Néel
phase according to the slave particle theory[15]. Since
the pVBS and Néel phases separately break two distinct
symmetries, the lattice and the spin rotation symmetry,
a direct second-order transition between them would nec-
essarily go beyond the Landau-Ginzburg paradigm and
point to the possibility of the DQCP. Although the na-
ture of the pVBS-Néel transition remains unresolved by
experiments, there are promising signs for the exciting
opportunity that SrCu2(BO3)2 might provide the first
experimental platform to realize DQCP.

Recent studies on di↵erent models with the same sym-
metry class showed that the transition between pVBS
and Néel phases could be first-order[17, 18]. However,
despite being first-order, the transition is accompanied
with an extended region of quantum-critical-like scaling
and an emergent O(4) symmetry, implying that the tran-
sition could be close to a DQCP (possibly as an avoided
criticality). Thus the DQCP is still the best theory to ac-
count for these anomalous features in the critical region,
even though it may eventually break down at longest
scales. Note that the J-Q model or loop model stud-
ied in Monte Carlo simulations[17, 18] are designed dif-
ferently from the original Shastry-Sutherland model to
avoid the sign problem. Given that the first- or second-
order nature of the transition can be tuned by model
parameters [19–22] and is therefore a model-dependent
property, the fate of the pVBS-Néel transition in the
Shastry-Sutherland model remains to be fully resolved
yet.

The goal of this work is to investigate the pVBS-
Néel transition in the Shastry-Sutherland model Eq. (1)
in more detail using both field theory and the density
matrix renormalization group (DMRG) approach, and
to identify the unique signatures of DQCP that can be
probed by inelastic neutron scattering (INS) or resonant
inelastic X-ray scattering (RIXS) experiments. We use
the infinite DMRG technique to overcome the sign prob-
lem. Our numerical simulation indicates (i) that the tran-
sition between pVBS and Néel phases appears continuous
up to the largest available system size (infinite cylinder
with the circumference of 10 lattice sites), although we
can not rule out the possibility of a weakly first-order
transition due to our limited system size. (ii) We also
observe the asymptotic degeneracy between spin-triplet
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FIG. 1: (a) The Shastry-Sutherland lattice of copper sites
(small circles) in SrCu2(BO3)2, on which the spins reside.
The spins are coupled across nearest neighbor bonds (J1, in
blue) and dimer bonds (J2, in red). Each unit cell contains
four sites, as shaded in yellow. The glide reflection Gx, Gy

and the diagonal reflection �xy, �xȳ symmetries are indicated
on the lattice. (b) Di↵raction peaks from copper sites. The
darker dot indicates a higher intensity. The extinction points
are marked out by red circles. The first Brillouin zone is
shaded in yellow, corresponding to the unit cell in (a). Spe-
cial momentum points �, X, Y,M are defined as labeled. (c)
The phase diagram of the spin model Eq. (1). The Néel anti-
ferromagnetic and dimer valence bond solid (dVBS) phases
are separated by the intermediate plaquette valence bond
solid (pVBS) phase upon tuning the J1/J2 ratio. The critical
points are determined in Tab. I based on our iDMRG result.
The transition between pVBS and Néel phases is likely to be
a DQCP (or weakly first-order proximate to a DQCP).

and spin-singlet excitations over a large length scale,
demonstrating an approximate emergent O(4) symmetry
which rotates among the Néel and pVBS order parame-
ters. Our theoretical analysis further suggests that (iii)
in the Shastry-Sutherland lattice, in contrast to previ-
ous realizations of DQCP, a dangerously irrelevant oper-
ator is absent which has consequences for numerics and
that (iv) critical spinon continua appear at the extinction
points of lattice di↵raction peaks (c.f. Fig. 1(b)) in both
the magnon and phonon channels at low-temperature
around the DQCP. The universal critical behaviors of
these continua are examined as well, which could guide
the experimental study of the candidate DQCP in the
SrCu2(BO3)2 material.

The rest of the paper is organized as follows. In
Sec. II, we perform an infinite DMRG simulation on the
Shastry-Sutherland spin model and discuss the nature
of the phase transition between Néel and VBS phases
based on a correlation length spectra. In Sec. III, we
analyze symmetry quantum numbers of a monopole op-
erator whose proliferation induces the transition to the
VBS phase. By investigating the transformation prop-


