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and field-theoretic dualities




Plan

® Fractional quantum Hall effect
® Composite fermion

® Duality




The quantum Hall effect




The microscopic theory of
the quantum Hall effect

2D electrons in a magnetic field

+ impurities
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Landau levels and IQHE

® |gnore interactions between electrons

® Energy levels of charged particle in magnetic field in 2D:
Landau levels

® When some Landau level fully occupied: integer quantum
Hall effect (IQHE) von Klitzing et al 1980
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The fractional quantum Hall effect (FQHE)
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The fractional quantum Hall effect (FQHE)

filling factor

number of electrons

vV

- degeneracy of a LL

n=2

n=|

L <1 000500 n=0

® without interaction: large ground-state degeneracy

® |nteractions are essential for determining the ground
state

® gapped at nu=1/3, ungapped at nu=1/2



Lowest Landau level limit




Lowest Landau level limit




Lowest Landau level limit

B (Pa + eAL)? | e?
H = za: 2m | Z Xq — Xp
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® First successful theory: Laughlin’s wave function
® (Can explain v=1/3 and v=1/5 plateaus

® but to explain the other plateaus one needs a new
idea

® A quasiparticle: composite fermion (CF)




When v approaches 1/2,a quasiparticle appears which moves
practically in straight line

L Q% SCIC
U

W=40nm n=1.74x10" cm=
a=200nm T=0.3K

4l

(Kamburov et al, 2014)
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What is the nature of this quasiparticle?




Composite fermion

® The standard picture: the quasiparticle is a
“composite fermion” = electron + 2 flux quanta




Flux attachment

Jain, Lopez Fradkin, Ovchinnikov,

Halperin Lee Read ~ 1990
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Flux attachment

Jain, Lopez Fradkin, Ovchinnikov,
Halperin Lee Read ~ 1990

o060 C

full LL: gapped state

(CF = composite fermion)
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Flux attachment
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Flux attachment

Jain, Lopez Fradkin, Ovchinnikov,
Halperin Lee Read ~ 1990

No left-over magnetic field: CFs move in straight line




® The ideas of flux attachment and composite
fermion has been formalized into a field theory
framework (Halperin-Lee-Read, or HLR, theory)

® very successful phenomenologically

® The composite fermion in this picture is not very
different from a standard quasiparticle in
condensed matter physics

® an electron,“dressed” with two magnetic flux
quanta




HLR field theory

1 N T
m‘(az_ZAz‘FZGJz)’QM +§E€M OJIUJ(S’VGJ)\

L = Z@DT((?O — ZA() -+ Z.GJ())??D

b=V xa=2x2m) “flux attachment”

mean field: Bag=B—-b=B —4mn

Beg =0

low-energy dof: D excitations near Fermi surface




® For a long time it was thought that the HLR theory
gives the correct low-energy effective theory

® There is one crucial problem




The problem of

particle-hole symmetry




Particle-hole symmetry

00000000
O |empty) = |full)

PH symmetry @C;L@_l = Cp
OiO " = —i

v
0010 OO0 OO0

v — 1 —v

exact symmetry the Hamiltonian on the LLL, when mixing
of higher LLs negligible

v =1/2 maps to itself




wikipedia.org

Half empty = half full




The problem

® Standard composite fermion theory attaches fluxes
to particles, not holes, and does not have particle-
hole symmetry

® thus it cannot be a correct low-energy description
of the half-filled Landau level




Puzzle

Particle-hole symmetry has been a puzzle in quantum
Hall physics

Composite fermion exists
standard picture: CF = a type of “dressed electrons”
but cannot be at the same time a “dressed hole”

New idea from ~ 2015: use particle-vortex duality




Resolution of the problem
of particle-hole symmetry




Bosonic particle-vortex duality

Peskin 1978; Dasgupta, Halperin 1981
2+ dim
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Bosonic particle-vortex duality
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2+ dim
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magnetic field charge density



® |dea: electron and composite fermion are particle-
vortex dual of each other




Fermionic particle-vortex duality

DTS; Metlitski, Vishwanath; Wang, Senthil 2015

Conjecture: free fermion =“QED” in 2+1 D
physical EM field

/

Theory 1: L =iy (0, — 1A,

- 1

Theory 2: L =ipy" (0, — ia,)Y 7 e“”)‘AuayaA

o

emergent U(l) gauge field

Theory 1 e Theory 2 ¢

magnetic field density

density magnetic field



Particle-vortex duality
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Theory | in magnetic field Theory 2 at finite density
zero charge density and zero magnetic field

Half-filled Landau level Fermi liquid

e = electrons Y = “composite fermion”




Dirac composite fermion

® Thus the quasiparticle of the half-filled Landau level is

a Dirac fermion, not a nonrelativistic fermion as in
the old HLR theory

This is not the first time Dirac fermion has appeared
in condensed matter physics: the most well-known
case is graphene

wikipedia.

uminho



What is strange about the
Dirac composite fermion

Density of composite fermions = 1/2 the number
of magnetic flux quanta

or ncr = (ne + nn)/2
in contrast to HLR theory: ncr = ne

conceptually not “dressing an electron”




® Some distinctive predictions of Dirac composite
fermion theory

® The PH-Pfaffian phase




Consequences of Dirac CF

One characteristics of Fermi surface is Friedel oscillations

(O(x)0(0)) ~ |x|*e2hre

Suppression of Friedel oscillations in correlations of
particle-hole symmetric observables O = (p — pg)V?p

observed in numerics

Geraedts, Zaletel, Mong, Metlitsky,
Vishwanath, Montrunich, 2015

Direct evidence of Berry phase 11 of the composite fermion



A new gapped state

The composite fermions can form Cooper pairs

Simplest pairing does not break particle-hole
symmetry

<€a5¢a¢5> # 0
Leads to a new state: PH-Pfaffian

May be the observed nu=5/2 quantum Hall plateau
Banerjee et al. Nature 2018




Observation of half-integer thermal Hall

conductance

Mitali Banerjee!, Moty Heiblum'#, Vladimir Umansky!, Dima E. Feldman?, Yuval Oreg' & Ady Stern'
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Fig. 4 | Summary of the normalized thermal conductance coefficient
results for v = 5/2. Plotted is the average K/k as a function of the
temperature at three different fillings on the v = 5/2 Gy conductance
plateau. A clear tendency of increased thermal conductance at lower
temperatures is visible. Such dependence is attributed to the increased
equilibration length (among downstream and upstream modes) at lower
temperatures (see ref. 2 for a similar behaviour of the v = 2/3 state).
Seventeen measurements were conducted, with K/x, falling in the range
K/kog = (2.53 4= 0.04) k¢ at electron base temperatures of Tp = 18-25 mK,
where most of the data points were taken.
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Fig. 5 | Possible orders predicted for the v = 5/2 state. Edge-mode
structure of the leading candidates for the many-body state of a fractional
quantum Hall v = 5/2 liquid: Pfaffian, anti-Pfaffian (A-Pfaffian) and
particle-hole Pfaffian (PH-Pfaffian) topological orders and the SU(2),,

K =8, 331 and 113 liquids (‘A’ stands for ‘anti’). Their expected quantized
thermal Hall conductance, KT, in units of k(T are also shown. A right-
pointing double-line arrow denotes a downstream edge mode of a fermion
with charge e” = e, contributing Hall conductivity Gy = e*/h and K/ko = 1
Right- and left-pointing solid-line arrows denote a downstream and an
upstream fractional charge mode, respectively, contributing 0.5Gy =
e?/(2h) and K/ ko = 1. The wavy line denotes a fermionic neutral mode
with zero charge and K/x( = 1, and the dashed line denotes a Majorana
mode with zero charge and K/ky = 1/2. A neutral mode with K/x¢ =1

is physically equivalent to two Majorana modes. The left (right) part of




Observation of half-integer thermal Hall

conductance

Mitali Banerjee!, Moty Heiblum'#, Vladimir Umansky!, Dima E. Feldman?, Yuval Oreg' & Ady Stern'

12 14 16 18 20 22 24
T, (MK)

Fig. 4 | Summary of the normalized thermal conductance coefficient
results for v = 5/2. Plotted is the average K/k as a function of the
temperature at three different fillings on the v = 5/2 Gy conductance
plateau. A clear tendency of increased thermal conductance at lower
temperatures is visible. Such dependence is attributed to the increased
equilibration length (among downstream and upstream modes) at lower
temperatures (see ref. 2 for a similar behaviour of the v = 2/3 state).
Seventeen measurements were conducted, with K/x, falling in the range
K/ko = (2.53 = 0.04)k at electron base temperatures of Ty = 18-25 mK,
where most of the data points were taken.

v=2 3 Integer, e, k = 1
>

SU@R), | Kik,=45

Fraction, e/4, k = 1

K//c0 =4
Neutral mode, 0, k = 1

Pfaffian Klky=3.5 "N\N\N\NS-

Majorana mode, 0, k = 0.5

Klky=3

PH-Pfaffian K/K0 =285

Klky=2

A-Pfaffian K//c0 =15

Klky=1

A-SU@), | Klk,=0.5

Fig. 5 | Possible orders predicted for the v = 5/2 state. Edge-mode
structure of the leading candidates for the many-body state of a fractional
quantum Hall v = 5/2 liquid: Pfaffian, anti-Pfaffian (A-Pfaffian) and
particle-hole Pfaffian (PH-Pfaffian) topological orders and the SU(2),,

K =8, 331 and 113 liquids (‘A’ stands for ‘anti’). Their expected quantized
thermal Hall conductance, KT, in units of k(T are also shown. A right-
pointing double-line arrow denotes a downstream edge mode of a fermion
with charge e” = e, contributing Hall conductivity Gy = e*/h and K/ko = 1
Right- and left-pointing solid-line arrows denote a downstream and an
upstream fractional charge mode, respectively, contributing 0.5Gy =
e?/(2h) and K/ ko = 1. The wavy line denotes a fermionic neutral mode
with zero charge and K/x( = 1, and the dashed line denotes a Majorana
mode with zero charge and K/x¢ = 1/2. A neutral mode with K/xy =1

is physically equivalent to two Majorana modes. The left (right) part of




Observation of half-integer thermal Hall

conductance

Mitali Banerjee!, Moty Heiblum'*, Vladimir Umansky', Dima E.

12 14 16 18 20 22 24
T, (MK)

Fig. 4 | Summary of the normalized thermal conductance coefficient
results for v = 5/2. Plotted is the average K/k as a function of the
temperature at three different fillings on the v = 5/2 Gy conductance
plateau. A clear tendency of increased thermal conductance at lower
temperatures is visible. Such dependence is attributed to the increased
equilibration length (among downstream and upstream modes) at lower
temperatures (see ref. 2 for a similar behaviour of the v = 2/3 state).
Seventeen measurements were conducted, with K/x, falling in the range
K/ko = (2.53 = 0.04)k at electron base temperatures of Ty = 18-25 mK,
where most of the data points were taken.

Feldman?, Yuval Oreg! & Ady Stern!

v=2 3 Integer, e, k = 1
>

Fraction, e/4, k = 1

K//c0 =4
Neutral mode, 0, k = 1

\N\NNN

Majorana mode, 0, k = 0.5

Klky=3

PH-Pfaffian

Klky=2
m—

Klky=1

A-SU@), | Klk,=0.5

Fig. 5 | Possible orders predicted for the v = 5/2 state. Edge-mode
structure of the leading candidates for the many-body state of a fractional
quantum Hall v = 5/2 liquid: Pfaffian, anti-Pfaffian (A-Pfaffian) and
particle-hole Pfaffian (PH-Pfaffian) topological orders and the SU(2),,

K =8, 331 and 113 liquids (‘A’ stands for ‘anti’). Their expected quantized
thermal Hall conductance, KT, in units of k(T are also shown. A right-
pointing double-line arrow denotes a downstream edge mode of a fermion
with charge e” = e, contributing Hall conductivity Gy = e*/h and K/ko = 1
Right- and left-pointing solid-line arrows denote a downstream and an
upstream fractional charge mode, respectively, contributing 0.5Gy =
e?/(2h) and K/ ko = 1. The wavy line denotes a fermionic neutral mode
with zero charge and K/x( = 1, and the dashed line denotes a Majorana
mode with zero charge and K/x¢ = 1/2. A neutral mode with K/xy =1

is physically equivalent to two Majorana modes. The left (right) part of




The “seed duality”

Both the bosonic and fermionic particle-vortex duality can
be derived from a “seed duality”

fermion = boson + flux

11 1

L =Ly Al — -——AdA L = L|¢p,al + —ada

2 47 47t

From this duality, a whole “web” of new dualities can be
derived

Karch, Tong; Seiberg, Senthil, Wang, Witten




Extreme small N

It turns out that in HEP literature there has been
suggestions of duality between bosonic and
fermionic Chern-Simons theories

Verified at large N but speculated to be valid also
at small N Aharony 2015

Baryons, monopoles and dualities in
Chern-Simons-matter theories

Ofer Aharony

Department of Particle Physics and Astrophysics,
Weizmann Institute of Science, Rehovot 7610001, Israel
E-mail : Ofer.Aharony@weizmann.ac.il

U(N ),k coupled to scalars <> SU(k)_nyn,/2 coupled to fermions,

seed duality N =Ny=Fk=1



gauge/gravity

duality . .
interacting

topological
insulators

half-filled
Landau level

holographic

Peskin-D ta-
higher-spin duality SonTasetp

Halperin duality

fermionic particle-
vortex duality

boson-fermion
seed duality

large N Chern-Simons \ —
matter duality

self-dual
Nf=2 QED
many more dualities




Conclusion of part |

® Fractional quantum Hall systems provide an
experimentally realizable example of duality

® Mysterious emergence of a new type of
quasiparticle; not a standard “dressed electron’

’

® Fruitful interaction between high-energy and
condensed matter physics




End of part |



Hydrodynamics of the

composite fermions




Plan

“Chiral metric hydrodynamics™
Fractional quantum Hall effect
Composite fermion

Kelvin’s circulation theorem (1869), static structure
factor

Ref: arXiv:1907.07187

® related work:A.Gromov & DTS “bimetric theory”,
Haldane’s dynamical gravity




Hydrodynamics

® Hydrodynamics of an ideal fluid can be written in
terms of the particle number density n(x) and
momentum density TT(X)

on ;
ot | (92(72/0 ) =

om; -
vt A 2y) . . —
¢ | (?j(fU 7TZ)—|—a@p 0

Galilean invariant fluids: ™ = mnuv;




Rydrodynamics

Landau 1941

® Hydrodynamics can be formulated as a dynamical
system with the Poisson brackets

1mi(x), n(y)} = n(x)9io(x — y)
(%), mi(y)y = 7 (x)0; + mi(y)0;]0(x — y)

® and Hamiltonian

H:/dx

n={H, n}
7:('2' - {H, 7'('2'}




Extension with tensor d.o.f.?

® We want to extend the hydrodynamics theory
with a tensor d.o.f. Gjj(x)

® What is the natural Poisson brackets?

® momentum density generates diffeomorphism

¢ — / dy £ (y)me(y), % = o 4+ €

{€, n(x)} = =" Oen — no,&" scalar density

(€, mi(x)} = —"Opm; — 0" — GOk vector density




Extending Poisson algebra

Let’s introduce a “dynamical metric” Gjj(x) which
transforms as a tensor

{€, Gij(x)} = —£cGyj = =" 0,Gij — Gr 08" — Gin0;6"
That fixes the Poisson bracket
1Gij(x), m(¥)} = (Gar(x)05 + Gk (x)0; + 0k Gij)0(x — y)
Next: {G, G}
{G, G} = 0: theory of a solid




Chiral metric hydro

Alternative in 2 spatial dimensions

1
{Gi;(x), Gr(y)} = _g(giijk +euGir +€ikGi +€i1Gik)0(x — y)

® We can consistently impose (det G)!'2 = n

® Hydrodynamics equations

O = —0;(nv"),

. . . 1 .
atm- = —n@z,u — 7@-8@-@3 — (9]-(?}37@-) — (?j(ajkai) -+ 507’“82-6*3-;6 ,

1
(%Gij — —vké‘kGij — Gik(?jvk — ijaﬂ]k -+ E(EikGﬂ -+ ijGil)O'kl

SH — / dx [ X)o7 (x) + ; ij(x)ac;ij(x)],



Normal modes

® |inearizing the equations one finds usual sound
wave and shear mode, and a gapped spin-2 mode

77,(523 T Qm) Qa:a; — _ny ~ COS Wl

() zy ~ SInwt

€¢ 4 b3
 2e—— Lame constant

W
ns

At small frequencies, a fluid with Hall viscosity

STV

D) s = average “orbital spin”




Relevance to quantum
Hall effect?




Particle-vortex duality

original fermion composite fermion
magnetic field density

density magnetic field

- 1

L = iy (0, — a0 1

e e A0, a) +8—7Te“”/\AM8VA,\

0S5 B —b

pzm— 47
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Mapping from electrons to CFs

composite
fermion

electron

1
: B #+0 p 70 b=0

half-filled Landau level Fermi liquid of CFs

Deviation from half filling = CF in b field




Bosonic excitations

Py

pr(0)
Low-energy, long-wavelength

excitations: fluctuations of the shape of
p.  the Fermi surface

pF(tv X, 6)) — p(})?’ + Z un(ta X) e—i"nﬁ.

nN——oo

One scalar field per spin

At low momenta we can limit ourselves to a few lowest modes

N
2N +1

glp < 1/N v

(length >> CF semiclassical orbit)




Nematic hydrodynamics

® Degrees of freedom:

® density

® cffective metric

7'('2'7'(']' |

/(2;)2 pip; (X, P) = ] mn(x)G i (x)

Vdet G = n



Poisson brackets

1
{Gij(x), Gu(y)} = —— (G + cuGjr + kG + G )0(x — y)

S

s can be determined from the Hall viscosity

= average “‘orbital spin” of composite fermion

1 /1 N(N + 1
1<—~01112|~--+N>: V+1)
L2 ON + 1




Hydrodynamic equation

CF dipole moment

1 E
H = Hy|n,m;, Gi;] —I—/dx (—aon S I ]7@-)

n + 0;(nv") = 0

T, = ne; + eijm)jb - Wjﬁjvj — 0j (Ujﬂ'z') —TL(%,[L

. 1 .
—a'(Tjkai) -+ iTjk@iij




Prescription for response

® Find a solution to the hydrodynamic equations
which satisfy the constraints:

B 1
nv' = —eYE;

n:E’ A J

® Read out electron density and current

B —b > T
_ 179, ( I
P 47 ‘ aZ(B)

b+ w .
— A7t w—VX( )

vorticity




GMP algebra

{mi(x), mj(y)} = [mj(x)0; + mi(y)0; — €i;bn|é(x — y)

p(p), p(a)] = (5(p x Q)p(p + q)

long-distance version of the GMP algebra

Girvin, MacDonald, Platzman 1986

CF theory “knows” about LLL projection




Kelvin’s circulation theorem
| 869

engineering.stackexchange.com




® |n ideal hydrodynamics there is an infinite number

of conserved quantities
vorticity

1F=/dxn(X)F (%) w=V (9

® Property of Poisson algebra, not of Hamiltonian: I
commutes with all hydrodynamic variables

w+ V- (wv) =0




Kelvin’s circulation theorem

® |n the presence of magnetic field and metric
degree of freedom, what is conserved is

—

Q:b+w+§\/éR[G] O+ V- (QF) =0

® zero PB with other hydro variables




Electron density is
curvature

® FElectron density

_3S _B-b
pe—5A0— 4




An immediate consequence

5pe = —VGRIG]  ~ 0,8;G,

:877

— (5pebpe)wq ~ ¢

Property of the lowest Landau level




® Since R ~ d0G: density-density correlation functions
4
~q

® The static structure factor is independent of H

Gij = 0ij + hij

r

<5/0e5pe>q —

N(N+1) ¢
2N +1 167B

. J




® Since R ~ d0G: density-density correlation functions
4
~q

® The static structure factor is independent of H

1
Gz’j — 51'3' + hz’j [hzz(X, he. (Y)] — gé(X — Y)

)
N(N+1) ¢

50.00.), = |

(0pe0pe)q ON + 1 1678

. J




® Since R ~ d0G: density-density correlation functions
~ 4
g
® The static structure factor is independent of H

1
Gz’j — 51'3' + hz’j [hzz(X, he. (Y)] — gé(X — Y)

a CLJr

r

<5/0e5pe>q —

N(N+1) ¢
2N +1 167B

. J




® Since R ~ d0G: density-density correlation functions
~ 4
g
® The static structure factor is independent of H

1
Gz’j — 5z'j + hz’j [hzz(X, he. (Y)] — gé(X — Y)

a CLJr

r

B N(N +1) q*
Oper ~ Oz hzz + OZh. 0Pe0Pe)a = SN T TonB

. J




® Since R ~ d0G: density-density correlation functions
4
~q

® The static structure factor is independent of H

1
Gz’j — 51'3' + hz’j [hzz(X, he. (Y)] — gé(X — Y)

a CLJr

B N(N +1) q*
Oper ~ Oz hzz + OZh. 0Pe0Pe)a = SN T TonB

. J

should be good for large N
for N=1 (nu=1/3, 2/3): reproduces exact value from Laughlin wf




® Since R ~ d0G: density-density correlation functions
4
~q

® The static structure factor is independent of H

1
Gz’j — 51'3' + hz’j [hzz(X, he. (Y)] — gé(X — Y)

a CLJr

B N(N +1) q*
Oper ~ Oz hzz + OZh. 0Pe0Pe)a = SN T TonB

. J

should be good for large N
for N=1 (nu=1/3, 2/3): reproduces exact value from Laughlin wf

(HLR: /2 or 2 times Laughlin’s value)




Low-q magnetoroton

The magnetoroton at small momenta is then the
excitation of the “dynamical metric”’ G;

spin 2 directed opposite to magnetic field for
v=N/(2N+1), along magnetic field for v=(N+1)/
(2N+1)

spin in principle detectable by polarized Raman
scattering

® (distinguishes Pfaffian and anti-Pfaffian)




® The calculation can be extended to nu=1/4 where
there is no symmetry arguments fixing the Berry

phase Fradkin, Goldman; Chong Wang, Senthil; Jie Wang

® allow one to read out the Berry phase from the

static structure factor on Jain states near 1/4
(Dung X. Nguyen, DTS to appear)




Static structure factor

® Equal time density-density correlation function

s(q) = — / dx e~ (p(t, x)p(t, 0))

Lo
if restricted to LLL states:"projected static structure factor”

s(g) — (1 e 0/%)

For gapped states at small g
5(q) = 54(qfB)* + O(¢°)

Can be read out from the wave function




S4

(

Putting N=1 and using Laughlin wavefuncitons @ =

N

AN 41

)«

N

AN — 1

)

Berry phase




Conclusion

® | ow-q regime of FQH liquid: described by a fluid

with internal metric degree of freedom, coupled to
a gauge field

® FElectron density ~ curvature of dynamic metric

® Static structure factor: algebraic calculation




End of part 2



